100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4.2 TrustPilot
logo-home
Resumen

Summary SCC 120 Types of functions Review

Puntuación
-
Vendido
-
Páginas
1
Subido en
20-08-2025
Escrito en
2022/2023

This is a comprehensive and detailed summary on; types of functions for SCC 120. An Essential Study resource just for YOU!!

Institución
Grado








Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Escuela, estudio y materia

Institución
Estudio
Desconocido
Grado

Información del documento

Subido en
20 de agosto de 2025
Número de páginas
1
Escrito en
2022/2023
Tipo
Resumen

Temas

Vista previa del contenido

Lecture 6 – Types of Functions
Inverse Functions
A function that does the opposite of the function from which it was formed. For a function f(x), its
inverse is written as f-1(x). For f-1(x), the domain of f(x) would be its codomain and the codomain of
f(x) would be its domain.
Some functions may not have an inverse function, unless their domain is restricted. One-to-many
functions cannot have inverse functions as they would become many-to-one functions, which aren’t
functions – but are still relationships.

For a function to have an inverse, they must be bijective (discussed below).

Surjective Functions
A function may be surjective if, for every element in A (a), there is at least one element in B (b)
where f(b) = a. In other words, the range of the function must equal the codomain, every image has
a preimage. To prove this:

For any number y there must be a number x such that f(x) = y. For example, if f(x) = x + 1, then y = x +
1 which rearranges to x = y – 1. So, because y is an integer, x must also be an integer, and so for any
integer, y, there is an integer x - 1 and so f(x) = y. Q.E.D.

Injective Functions
A function may be injective if, for every element in A (a), there is only one element in B (b) where
f(b) = a. This means that all images have one preimage and/or that there exist only one-to-one
relations. To prove this:

For any number x there must be a number y such that f(x) = f(y) and can be simplified to x = y. For
example, if f(x) = 2x the f(y) = 2y. If f(x) = f(y), then 2x = 2y, which can become x = y. Q.E.D.

Bijective Functions
Bijective functions are functions that are both surjective and injective. Bijective functions are able to
have inverse functions. A function is bijective if, f(a) = f(b) and we can show that a = b.
$15.99
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada

Conoce al vendedor

Seller avatar
Los indicadores de reputación están sujetos a la cantidad de artículos vendidos por una tarifa y las reseñas que ha recibido por esos documentos. Hay tres niveles: Bronce, Plata y Oro. Cuanto mayor reputación, más podrás confiar en la calidad del trabajo del vendedor.
anyiamgeorge19 Arizona State University
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
60
Miembro desde
2 año
Número de seguidores
16
Documentos
7001
Última venta
2 semanas hace
Scholarshub

Scholarshub – Smarter Study, Better Grades! Tired of endless searching for quality study materials? ScholarsHub got you covered! We provide top-notch summaries, study guides, class notes, essays, MCQs, case studies, and practice resources designed to help you study smarter, not harder. Whether you’re prepping for an exam, writing a paper, or simply staying ahead, our resources make learning easier and more effective. No stress, just success! A big thank you goes to the many students from institutions and universities across the U.S. who have crafted and contributed these essential study materials. Their hard work makes this store possible. If you have any concerns about how your materials are being used on ScholarsHub, please don’t hesitate to reach out—we’d be glad to discuss and resolve the matter. Enjoyed our materials? Drop a review to let us know how we’re helping you! And don’t forget to spread the word to friends, family, and classmates—because great study resources are meant to be shared. Wishing y'all success in all your academic pursuits! ✌️

Lee mas Leer menos
3.4

5 reseñas

5
2
4
0
3
2
2
0
1
1

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes