100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4,6 TrustPilot
logo-home
Notas de lectura

A-level AQA Computer Science FUNDAMENTALS OF ALGORITHMS

Puntuación
-
Vendido
-
Páginas
3
Subido en
15-08-2025
Escrito en
2025/2026

Level up your skills with these expertly written notes covering the fundamentals of algorithms topic from the AQA A-level Computer Science specification. Whether you're preparing for Paper 1 or reinforcing your understanding throughout the year, this resource is designed to make complex concepts crystal clear (used and made by a consistently A/A* student). What’s Inside: - Detailed explanations - Clear breakdown to reinforce understanding - Key terminology to help you apply concepts effectively - Structured summaries aligned with the AQA spec for efficient revision

Mostrar más Leer menos
Institución
Grado

Vista previa del contenido

FUNDAMENTALS OF ALGORITHMS.

Graph-Traversal

Graph-traversal is the process of visiting each vertex in a graph. There are
two algorithms in this section - depth-first and breadth-first graph-
traversals. In a depth-first search, a branch is fully explored before
backtracking, whereas in a breadth-first search a node is fully explored
before venturing on to the next node.

Depth-first traversal uses a stack. Depth-first traversal is used for
navigating a maze. The following example uses a tree, but a depth-first
algorithm can be performed on any connected graph.

Tree-Traversal

Tree-traversal is the process of visiting/updating/outputting each node in a
tree - it is a form of algorithm. Unlike a graph-traversal, tree-traversals are
unique to trees and must start at the root. From the root, they travel left,
down the tree. There are three types of tree-traversals; pre-order, in-order
and post-order. Pre-order and post-order tree-traversal can be performed
on any tree including binary trees but an in-order traversal is only well
defined for binary trees.

Pre-order traversal is used for copying a tree. It can be performed on
any tree.

In-order traversal is useful for a binary search tree and because it
will output the contents of a binary search tree in ascending order. It
can only be performed on binary trees.

Post-order traversals can be performed on any tree. They are useful
for Infix to RPN (Reverse Polish Notation) conversions, producing a
postfix expression from an expression tree and emptying a tree.

Infix to Postfix; as mentioned above, postorder traversal can be
used to make infix to RPN conversions and make postfix expressions
from expression trees. Technically, these two uses are the same. The
difference is that Infix to RPN would involve the making of and then
traversing of a binary tree, whereas in the latter it can be assumed
the expression tree has already been formed.

Reverse Polish

Humans prefer to use in-fix order of notation. This means that the operand
is either side of the opcode. However, longer equations can cause
confusion over the order of execution.

Escuela, estudio y materia

Nivel de Estudio
Editores
Tema
Curso

Información del documento

Subido en
15 de agosto de 2025
Número de páginas
3
Escrito en
2025/2026
Tipo
Notas de lectura
Profesor(es)
Nil
Contiene
Todas las clases

Temas

$11.41
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada

Conoce al vendedor
Seller avatar
leyladavidson

Documento también disponible en un lote

Conoce al vendedor

Seller avatar
leyladavidson Bedford College
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
1
Miembro desde
1 año
Número de seguidores
0
Documentos
20
Última venta
9 meses hace
Leyla's A-level Master Notes in CS and GEO!

Welcome to my store, your destination for academically rigorous, exam-focused resources tailored for AQA A-Level Computer Science and OCR Geography who achieves A/A* consistently . Curated by a high-achieving student from Bedford College, these notes are designed to elevate your understanding and performance. Each document is: - Aligned with current specifications and mark schemes - Structured for efficient revision and deep comprehension - Enriched with case studies, and technical terminology - Ideal for students aiming for top grades and conceptual clarity

Lee mas Leer menos
0.0

0 reseñas

5
0
4
0
3
0
2
0
1
0

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes