100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4,6 TrustPilot
logo-home
Examen

QMB3302 Practice Final Exam most recent version Comprehensive 100 questions and verified answers accurate solutions Already graded A+ Get it 100% correct Pipelines are useful (in analytics with Python sense) for the following reasons

Puntuación
-
Vendido
-
Páginas
25
Subido en
11-08-2025
Escrito en
2025/2026

QMB3302 Practice Final Exam most recent version Comprehensive 100 questions and verified answers accurate solutions Already graded A+ Get it 100% correct Pipelines are useful (in analytics with Python sense) for the following reasons

Mostrar más Leer menos
Institución
QMB3302
Grado
QMB3302










Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Escuela, estudio y materia

Institución
QMB3302
Grado
QMB3302

Información del documento

Subido en
11 de agosto de 2025
Número de páginas
25
Escrito en
2025/2026
Tipo
Examen
Contiene
Desconocido

Temas

Vista previa del contenido

QMB3302 Practice Final Exam 2025-2026
most recent version Comprehensive 100
questions and verified answers accurate
solutions Already graded A+ Get it 100%
correct


Pipelines are useful (in analytics with Python sense) for the
following reasons? (choose all that apply)
- Pipelines make it easy to repeat/replicate steps and run
multiple models
- Pipelines are good for moving data into your programming
environment
- Pipelines automatically update to new versions of Python
- Pipelines help organize code you used to clean and treat
your data
- Pipelines make it very easy to change small things in your
model, like which variable to include - ,,,,answer,,,,..-
Pipelines make it easy to repeat/replicate steps and run
multiple models
- Pipelines help organize code you used to clean and treat
your data
- Pipelines make it very easy to change small things in your
model, like which variable to include

,The basic idea of a regression is very simple. We have some
X value (which we call ______) and some Y value that we are
trying to _____. We could have multiple Y value, but that is not
something we have covered. - ,,,,answer,,,,..features; predict

Y and y-hat are a little different. Y is our target vector, and y-
hat is an output in our model that is a.... (choose one of the
following)
- estimate or prediction of y
- the actual value of y
- an axis on our 2 way graph
- a combination of XY intercept coordinates -
,,,,answer,,,,..estimate or prediction of y

When looking at the code in the videos, we sometimes used a
variable to hold out model. What is the significance of the
word "model" in the below code?

model = LinearRegression(fit_intercept=True) -
,,,,answer,,,,..'model' is a named variable and is just holding
our linear regression model. It could be renamed anything.
The word itself is not important. It is just a container.

What is a good model fit value? - ,,,,answer,,,,..unknowable
without knowing/understanding the context of the domain

Imagine X in the below is a missing value. If I were to run a
median imputer on this set of data, what would the return
value be?

, 50, 60, 70, 80, 100, 60, 5000, X - ,,,,answer,,,,..70

Which of the below were discussed as being problems with
the holdout method for validation?
- Data is not available for test and control differences
- Outliers can skew the result
- The model is not trained on all of the data
- K=3 is not sufficiently large enough
- Validation is sometimes too challenging - ,,,,answer,,,,..-
Outliers can skew the result
- The model is not trained on all of the data

The features in a model...
- are used as proxies for y-hat divided by y
- are always functions of each other
- keep the model validation process stable
- none of these answers are correct - ,,,,answer,,,,..none of
these answers are correct

What is the first variable in a decision tree called (before any
of the branches)? - ,,,,answer,,,,..root

One problem with decision trees is that they are prone to
_____ if you are not careful or do not set the _____
appropriately. - ,,,,answer,,,,..overfitting; max depth

True or False: The random forest algorithm prevents, or at
least avoids to some extent, the problems with overfitting
found in decision trees. - ,,,,answer,,,,..True
$22.49
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada


Documento también disponible en un lote

Conoce al vendedor

Seller avatar
Los indicadores de reputación están sujetos a la cantidad de artículos vendidos por una tarifa y las reseñas que ha recibido por esos documentos. Hay tres niveles: Bronce, Plata y Oro. Cuanto mayor reputación, más podrás confiar en la calidad del trabajo del vendedor.
Bestdoctorwails Teachme2-tutor
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
35
Miembro desde
1 año
Número de seguidores
3
Documentos
1472
Última venta
1 día hace

Many students don't have the time to work on their academic papers due to balancing with other responsibilities, for example, part-time work. I can relate. kindly don't hesitate to contact me, my study guides, notes and exams or test banks, are 100% graded

4.9

269 reseñas

5
256
4
6
3
2
2
2
1
3

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes