to AccompAny
ORBITAL MECHANICS FOR ENGINEERING STUDENTS
HowArd D. Curtis
Embry-Riddle AeronAuticAl University
DAytonA BeAch, FloridA
, Solutions Manual Orbital Mechanics for Engineering Students Chapter 1
Problem 1 .1
(A)
A A Ax iˆ Ay ˆj Azkˆ Ax iˆ Ay ˆj Azkˆ
Ax iˆ Ax iˆ Ay ˆj Azk ˆ Ay ˆj Ax iˆ Ay ˆj Azkˆ Azk ˆ Ax iˆ Ay ˆj Azkˆ
2
2
Ax i ˆ i ˆ Ax Ay i ˆ ˆ j Ax Az i ˆ k ˆ Ay Ax ˆ j i ˆ Ay ˆ j ˆ j Ay Az ˆ j kˆ
AzAx kˆ iˆ AzAy kˆ ˆj Az2 kˆ kˆ
Ax 2 1 Ax Ay 0 Ax Az 0 Ay Ax 0 Ay 2 1 Ay Az 0 Az Ax 0 Az Ay 0 Az2 1
Ax 2 Ay 2 Az2
But, According to the PythAgoreAn Theorem, Ax 2 Ay 2 A
z
2
A2 , where A A , the mAgnitude of
the vector A . Thus A A A2 .
(b)
iˆ ˆj kˆ
A B C A Bx By Bz
Cx Cy Cz
Ax iˆ Ay ˆj Azkˆ iˆ ByCz BzCy ˆj BxCz BzCx kˆ BxCy ByCx
Ax By Cz BzCy Ay Bx Cz BzCx Az Bx Cy By Cx
or
A B C Ax By Cz Ay BzCx AzBx Cy Ax BzCy Ay Bx Cz AzBy Cx (1)
Note thAt A B C C A B , And According to (1)
C A B Cx Ay Bz Cy AzBx Cz Ax By Cx AzBy Cy Ax Bz Cz Ay Bx (2)
The right hAnd sides of (1) And (2) Are identicAl. Hence A B C A B C .
(c)
iˆ ˆj kˆ iˆ ˆj kˆ
A B C Ax iˆ Ay ˆj Azkˆ Bx By Bz Ax Ay Az
Cx B y C z Bz C y Bz C x Bx C y Bx C y B y C x
Cy Cz
Ay Bx Cy By Cx Az BzCx Bx Cz iˆ Az By Cz BzCy Ax Bx Cy By Cx ˆj
x z y y z
A B C B C A B C B C k ˆ
x z x z y
y x y z x z y y x z z x x y x z y z x x y z z y
A B C A B C A B C A B C iˆ A B C A B C A B C A B C ˆj
x z x y z y x x z y y z ˆ
A B C A B C A B C A B C kˆ
Bx Ay Cy AzCz Cx Ay By AzBz i By Ax Cx AzCz Cy AxBx AzBz ˆj
z x x y y z x x y y
B A C A C C A B A B k ˆ
Add And subtrAct the underlined terms to get
, Solutions Manual Orbital Mechanics for Engineering Students Chapter 1
A B C Bx AyC y AzC z AxC x Cx AyB y AzB z AxB x i ˆ
By Ax Cx AzCz Ay Cy Cy Ax Bx AzBz Ay By ˆj
z
B A C A C A C
x x y y z z C z A B
x x A
B
y y A B
z z kˆ
Bx i ˆ By ˆ j Bzkˆ AxCx AyCy AzCz Cx iˆ Cy ˆj Czkˆ AxBx AyBy AzBz
or
A B C B A C CA B
Problem 1 .2 Using the interchAnge of Dot And Cross we get
A B C D A B C D
But
A B C D C A B D (1)
Using the bAc – cAb rule on the right, yields
A B C D AC B BC A D
or
A B C D A DC B B DC A (2)
Substituting (2) into (1) we get
A B C D A CB D A DB C
Problem 1 .3
Velocity AnAlysis
From EquAtion 1.38,
v vo rrel vrel . (1)
From the given informAtion we hAve
vo 10Iˆ 30Jˆ 5 0 K̂ (2)
rrel r ro 150Iˆ 200Jˆ 3 0 0 K̂ 300Iˆ 200Jˆ 1 0 0 K̂ 150Iˆ 400Jˆ 2 0 0 K̂ (3)
Iˆ Jˆ K̂
rrel 0.6 0.4 1.0 320Iˆ 270Jˆ 3 0 0K̂ (4)
150 400 200