100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4.2 TrustPilot
logo-home
Resumen

Harvard Data Science for Business – Full Course Summary (All 6 Modules)

Puntuación
-
Vendido
-
Páginas
19
Subido en
24-07-2025
Escrito en
2024/2025

This is a complete, high-yield summary of the HarvardX Data Science for Business course, neatly organized by module and filled with real case studies, code examples in R, and actionable business applications. Perfect for students, analysts, and professionals looking to strengthen their data science thinking and business insight. Modules Covered: The Data Science Shift – Problem framing, data wrangling, visualization, and hypothesis development Data Wrangling – Handling missing data, data joining, case study on predicting car returns (lemon cars) Visualization – Designing effective charts, misleading visuals, color and accessibility best practices Time Series & Forecasting – Exponential smoothing, modeling NICU demand, inventory and finance use cases Advanced Regression – Linear models, dummy variables, interaction effects, movie and retail case studies Logistic Regression & Machine Learning – Classification models (logistic, CART, random forest, LASSO, neural nets), confusion matrices, F1 score, Carvana & Fannie Mae cases Why it's valuable: Clear breakdowns of methods, code, and business impact Strong real-world focus: from lemon car prediction to loan default modeling Great for data science learners, job prep, or MBA analytics support R code included for each technique (e.g. logistic regression, tree models, LASSO)

Mostrar más Leer menos
Institución
Data Science And Machine Learning
Grado
Data science and machine learning










Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Escuela, estudio y materia

Institución
Data science and machine learning
Grado
Data science and machine learning

Información del documento

Subido en
24 de julio de 2025
Número de páginas
19
Escrito en
2024/2025
Tipo
Resumen

Temas

Vista previa del contenido

Harvard Data Science for Business Overview

Module 1: The Data Science Shift

Overview:
This module introduces the foundation of the data-driven decision-making process and
highlights how data science is transforming business analysis. It outlines the complete data
science workflow, from understanding the business problem to communicating results
effectively.



1. Understanding the Business Problem

Before diving into data, it's crucial to define a clear and actionable business question. For
example, "What makes for a bad car purchase?" This ensures data efforts are aligned with a
strategic decision.



2. Data Wrangling

Data wrangling involves preparing raw data for analysis—handling missing values, cleaning
inconsistencies, and structuring it logically. For instance:

r

carvana.data = read.csv("training.csv", na.strings=c("NULL"))

This code snippet treats "NULL" as a missing value (NA) during import, which is vital for accurate
analysis.

Common functions used:

• summary() – Provides descriptive statistics.

• dim() – Reveals dataset dimensions (rows × columns).



3. Visualization

Visualizations help explore patterns, trends, and anomalies quickly. They're not just about
aesthetics—they're tools for interactive discovery and challenging assumptions.

,Data visualizations are essential from data wrangling to communicating results. Misleading
graphs or poor visual design can obscure key insights or lead to incorrect conclusions.

Examples:

• Time series plots to track pricing trends.

• Boxplots to highlight outliers in mileage or price.



4. Generating Hypotheses

Turn broad business questions into testable hypotheses. For example:

“What makes a bad buy?” → “Vehicles with more than 120,000 miles and fewer than 3 prior
owners are more likely to be returned within 30 days.”

This transition is crucial—it narrows the focus and sets the stage for measurable insights and
predictive modeling.



5. Analysis

This stage involves statistical tests, model building, and deeper diagnostics to validate (or refute)
hypotheses. While not deeply covered in Module 1, it's where later modules will pick up.



6. Communicating Results

You must translate technical results into business impact—executives need actionable insights,
not code. Good communication bridges the gap between analysts and decision-makers.



Key Takeaway:

Skipping early steps like data wrangling or visual exploration can lead to flawed analysis and
poor decisions.
A structured, hypothesis-driven approach improves both the reliability and impact of business
decisions.

, Module 2: Data Wrangling — Cleaning, Merging, and Preparing Data

Overview:
In this module, we enter the essential, gritty phase of data science—data wrangling. Raw data is
often messy, incomplete, or inconsistent, and cleaning it well is a prerequisite for any reliable
analysis. We also explore how to combine multiple datasets using joins and assess missingness,
all while maintaining reproducibility and clarity in our workflow.



1. Importance of a Querying Language

The image you shared emphasizes the purpose of using reproducible code:

• Reproduce results over time – Ensure analysis is consistent when revisited.

• Offer clarity on the process – Make it easier for others to follow your logic.

• Share and communicate insights – Documented queries enable transparency and
collaboration.

Languages like R or Python are not just tools—they’re essential for encoding your data logic
clearly and precisely.



2. Missing Data and Imputation

Missing values (NA) are common in real-world data. If we ignore them, we risk biased results.

Here's how you handled mean imputation using a loop in R:

r

impute.cols = c("NUMBER_OF_BORROWERS", "DEBT_TO_INCOME_RATIO",

"BORROWER_CREDIT_SCORE", "MORTGAGE_INSURANCE_PERCENTAGE",

"CO_BORROWER_CREDIT_SCORE", "MSA_POPULATION")



for (i in impute.cols){

fannie.data[,i] = ifelse(is.na(fannie.data[,i]),

mean(fannie.data[,i], na.rm=TRUE),

fannie.data[,i])
$4.49
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada

Conoce al vendedor
Seller avatar
c.7

Conoce al vendedor

Seller avatar
c.7 Icahn School of Medicine at Mount Sinai
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
0
Miembro desde
4 meses
Número de seguidores
0
Documentos
26
Última venta
-

0.0

0 reseñas

5
0
4
0
3
0
2
0
1
0

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes