100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4.2 TrustPilot
logo-home
Examen

Module 3 ISYE-6414 Revision Assignment Questions Fully Answered Rated A+.

Puntuación
-
Vendido
-
Páginas
27
Grado
A+
Subido en
23-07-2025
Escrito en
2024/2025

Logistic regression use - Answer 3.1) Modeling binary response data What are some examples of a binary response? - Answer 3.1) Zero or one, yes or no, winter or summer, small or big, leave or not leave. Are binary variables normally distributed? - Answer 3.1) No. This is unlike linear regression where the assumption is that the error terms are normally distributed with mean zero. Why can't we apply the linear regression model to logistic regression? - Answer 3.1) Because logistic regression does not have the normality assumption. What are we modeling in logistic regression? - Answer 3.1) The probability of success, given the predicting variables. What model is used to model s-shaped probability curves? - Answer 3.1) Logistic regression is commonly used to model s-shaped patterns for explaining binary response data. What is the g function? - Answer 3.1) The g function is the s-shape function that models the probability of a success with respect to the predicting variables. What is the g link function? - Answer 3.1) We link the probability of success to the predicting variables using the g link function, in a way that this g function of the probability of success is a linear model of the predicting variables. In a logistic regression model do we have an error term? - Answer 3.1) No, we do not have an error term in logistic regression. What are the logistic regression model assumptions? - Answer 3.1) Assumption 1 is the linearity of the link function of the probability of a success in the predicted variables, that is we write the g function of the probability of a success as a linear combination of the predicting variables g(p(X1,...,Xp) = B0 + B1X1 + ... + BpXp

Mostrar más Leer menos
Institución
Grado










Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Escuela, estudio y materia

Institución
Grado

Información del documento

Subido en
23 de julio de 2025
Número de páginas
27
Escrito en
2024/2025
Tipo
Examen
Contiene
Preguntas y respuestas

Temas

Vista previa del contenido

Module 3 ISYE-6414 Revision
Assignment Questions Fully
Answered Rated A+.
Logistic regression use - Answer 3.1) Modeling binary response data



What are some examples of a binary response? - Answer 3.1) Zero or one, yes or no, winter or
summer, small or big, leave or not leave.



Are binary variables normally distributed? - Answer 3.1) No. This is unlike linear regression
where the assumption is that the error terms are normally distributed with mean zero.



Why can't we apply the linear regression model to logistic regression? - Answer 3.1) Because
logistic regression does not have the normality assumption.



What are we modeling in logistic regression? - Answer 3.1) The probability of success, given
the predicting variables.



What model is used to model s-shaped probability curves? - Answer 3.1) Logistic regression is
commonly used to model s-shaped patterns for explaining binary response data.



What is the g function? - Answer 3.1) The g function is the s-shape function that models the
probability of a success with respect to the predicting variables.



What is the g link function? - Answer 3.1) We link the probability of success to the predicting
variables using the g link function, in a way that this g function of the probability of success is a
linear model of the predicting variables.



In a logistic regression model do we have an error term? - Answer 3.1) No, we do not have an
error term in logistic regression.



What are the logistic regression model assumptions? - Answer 3.1) Assumption 1 is the
linearity of the link function of the probability of a success in the predicted variables, that is we
write the g function of the probability of a success as a linear combination of the predicting

,Assumption 2, the response data are independent random variables (Independence)



Assumption 3 assumes that the link function is the so-called logit function. This is an
assumption since the logit function is not the only function that yields s-shaped curves.



g(p) = ln[p/(1-p)]



What kind of transformation is the g link function? - Answer 3.1) It is a non-linear
transformation of the probability of success or of the expectation of the response variable.



What is the equation for the logit link function? - Answer 3.1) g(p) = ln[p/(1-p)] where p is the
probability of success.



Are there other functions that are s-shaped and used in modeling binary responses? - Answer
3.1) Yes. And this is done under a more general framework called binomial model.



What is the probability of success given predictors model for logistic regression? - Answer 3.2)
p(X1,...,Xp) = e^(B0+B1X1+...+BpXp)/(1+e^(B0+B1X1+...+BpXp)



OR by linking p = Pr(Y = 1 | X1,...,Xp) to the logit link function g(p)=ln[p/(1-p)] = B0 + B1X1 + ... +
BpXp



What is the model that generalizes linear regression when the response variable y is binary or
binomial? - Answer 3.2) Logistic regression



What is the objective of the model where Yi takes 0 or one values (thus binary) and we want to
relate OR regress Y onto some predicting variables? - Answer 3.2) The objective of the model
is to estimate the probability of a success given the predicting variables.



True or False: The probability of success using the logit link function is not the same as the
probability of success equal to the ratio between the exponential of the linear combination of
the predicting variables over 1 plus the same exponential. - Answer 3.2) False.



g(p) = ln[p/(1-p) and

, What is the probability of success given one predicting variable X = x? - Answer 3.2) p = p(x) =
Pr(Y = 1 | x)



What is the logit function given one predicting variable X = x? - Answer 3.2) It is the log odds
function, ln[p/(1-p)] = B0 + B1x



What is the exponential of the logit function given one predicting variable X = x? - Answer 3.2)
p(X) / [1-p(X)] = e^(B0 + B1x) and is the ODDS of Y = 1 at X = x.



What is the odds ratio (or X = a vs. X = b)? - Answer 3.2) e^(B0 + B1a)/e^(B0 + B1b) = e^[B1(a-
b)]



What is the log odds function? - Answer 3.2) It is the log of the ratio between probability of a
success and the probability of a failure (so, the ratio between the log of P over 1 - p).



What is the odds ratio? - Answer 3.2) Comparing odds for two different values of the
predicting variable. Can also be worded as the ratio of the odds of the response given A vs. the
odds of the response given B.



What is the interpretation of the odds ratio at X = b + 1 vs. X = b? - Answer 3.2)
e^[B0+B1(b+1)]/e^(B0+B1b) = e^B1



The regression coefficient B1 can be interpreted as the log of the odds ratio for an increase of
one unit in the predicting variable.



If X is a dummy variable of a categorical factor, interpret as the log of odds ratio of one category
vs. the baseline



Interpret B with respect to the odds of success, not directly with respect to the response
variable.



What does the odds ratio of e^B1 say? - Answer 3.2) The odds ratio is equal to exponential of
the coefficient beta, or that the log of the odds ratio is equal to the coefficients. Thus, we
interpret the regression coefficient beta as the log of the odds ratio for an increase of one unit
in the predicting variable.
$13.99
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada


Documento también disponible en un lote

Conoce al vendedor

Seller avatar
Los indicadores de reputación están sujetos a la cantidad de artículos vendidos por una tarifa y las reseñas que ha recibido por esos documentos. Hay tres niveles: Bronce, Plata y Oro. Cuanto mayor reputación, más podrás confiar en la calidad del trabajo del vendedor.
TestSolver9 Webster University
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
745
Miembro desde
2 año
Número de seguidores
124
Documentos
24436
Última venta
5 horas hace
TESTSOLVER9 STORE

TOPNOTCH IN LEARNING MATERIALS,(EXAMS,STUDYGUIDES NOTES ,REVIEWS,FLASHCARDS ,ALL SOLVED AND PACKAGED.OUR STORE MAKE YOUR EDUCATION JOURNEY EFFICIENT AND EASY.WE ARE HERE FOR YOU FEEL FREE TO REACH US OUT .

3.6

129 reseñas

5
57
4
19
3
22
2
9
1
22

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes