100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4.2 TrustPilot
logo-home
Resumen

MCRS Full Summary Partial Exam 1 (week 1-5 semester1_block1)

Puntuación
5.0
(2)
Vendido
6
Páginas
34
Subido en
13-10-2020
Escrito en
2019/2020

Summary including theoretical section and statistical part of the course MCRS (semester 1 block 2) Include A&B part A-parts are summaries of the book 'Introducing_Communication research' - Donald F.Treadwell B-parts are summaries of the book 'Discovering Statistics Using IBM SPSS' - Andy Field masterclass notes All summaries are self-made and used for my own exam, last year (2019/2020).

Mostrar más Leer menos
Institución
Grado











Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Libro relacionado

Escuela, estudio y materia

Institución
Estudio
Grado

Información del documento

¿Un libro?
Desconocido
Subido en
13 de octubre de 2020
Número de páginas
34
Escrito en
2019/2020
Tipo
Resumen

Temas

Vista previa del contenido

Summary MCRS 2b [ §1.1-1.6.2 | §1.8-1.8.4 | §1.8.5-1.8.6 | §5.4-5.5 ]
Methods
Theory = an explanation or set of principles that is well substantiated by repeated testing and explains a
broad phenomenon

Theories  data collection and analysis

 Theories lead to data collection/analysis and Data collection/analysis informs theories



Theory and Hypotheses  explain the world

Difference between theory and hypothesis

- Theory explains a wide set of phenomena with small set of well-established principles
- Hypothesis (seeks to) explains a narrower phenomenon and is (yet) untested



- HYPOTHESIS IS A EXPLANTORY STATEMENT ABOUT SOMETHING  BUT NOT
OBSERVABLE ITSELF.
- THE PREDICTION IS NOT THE HYPOTHESIS
- THE PREDICTION = SOMETHING DERIVED FROM HYPOTHESIS THAT
OPERATIONALIZES IT SO YOU CAN OBSERVE THINGS THAT HELP YOU
DETERMINE THE PLAUSIBLITY OF THE HYPOTHESIS




To test hypothesis  move from conceptual domain to observable domain

Scientific statement vs non scientific statement

Scientific  be verified with reference to empirical evidence

Non scientific  cannot be empirically tested

Falsification = Act of disproving a hypothesis or theory

Variables

Hypotheses can be expresses in two variables: 1. Proposed cause 2. Proposed outcome

1. Independent variable = variable thought to be the cause of some effect. Experimental research

, 2. Dependent variable =Variable thought to be affected by changes in an independent variable.
Aka outcome
1. Predictor variable = synonym to independent variable, predict an outcome variable
2. Outcome variable = synonym to dependent variable, change as a function of changes in a
predictor variable

 In experimental work  cause = preditor ; effect = outcome

Related to measurement

Type of categorical variable  binary variable

 Ex. Dead or alive, male or female

Nominal variable  two things equivalent in some sense are given the same name but there are more
than 2 possibilities

Continuous variable  measure any level of precision

Discrete variable  take certain values

Continuous measured  as Discrete

 Ex. We measure age by using years and not including nanoseconds

Discrete measured  as Continuous

 Ex. Number of boyfriends you have is a discrete variable. When for example the magazine
says that the average amount of boyfriends women have in their 20s is 4,6. The variable is
continuous eventhough the averages are meaningless.



Measurement-related issues that could occur:

1. Different sample ( amount, distribution)
2. Different method of measurement



Self report measures  larger measurement error because factors than the one you’re trying to
measure will influence how people respond to our measures

Level of measurement

1. Categorical (entities are divided into distinct categories):
- Binary variable: There are only two categories (e.g., dead or alive).
- Nominal variable: There are more than two categories (e.g.,

whether someone is an omnivore, vegetarian, vegan, or fruitarian).

- Ordinal variable: The same as a nominal variable but the categories

, have a logical order (e.g., whether people got a fail, a pass, a merit

or a distinction in their exam).



2. Continuous (entities get a distinct score):
- Interval variable: Equal intervals on the variable represent equal

differences in the property being measured (e.g., the difference

between 6 and 8 is equivalent to the difference between 13 and

15).

- Ratio variable: The same as an interval variable, but the ratios of

scores on the scale must also make sense (e.g., a score of 16 on an

anxiety scale means that the person is, in reality, twice as anxious as

someone scoring 8). For this to be true, the scale must have a

meaningful zero point.

Validity and reliability

Validity = refers whether an instrument measures what it was designed to measure

- Data recorded simultaneously using the new instrument and existing criteria  said to
assess concurrent validity
- Data used to predict observations at a later point in time  said to assess predictive
validity

Reliability = ability of the measure to produce the same results under the same circumstances

- Test the same group of people twice

, Statistics
Normal distribution  bell shape

Deviation of distribution

1. Skew – lack of symmetry
- Positively skewed: frequent scores
clustered at the lower end
- Negatively skewed: frequent scores
cluster at higher end
2. Kurtosis – pointiness
- Positive kurtosis (leptokurtic): many scores in the tails and pointy
- Negative kurtosis (platykurtic): thin in
the tails flatter than normal

The mode

 Score that occurs most frequently

Calculate:

1. Place data in ascending order
2. Count how many times each score occurs
3. Most occurring score = mode

The median

 Middle score when scores are ranked in order of magnitude

Calculate:

1. Place data in ascending order
2. Find position of the middle score (n)
3. Add one to this value – (n+1)
4. Divide by 2 – (n+1)/2
 Valid for uneven numbers of scores

! for even number of scores see below

 Ex. 22, 40, 53, 57, 93, 98, 103, 108, 116, 121
1. Add up two middle scores - 93 and 98 are the middle  (93+98)
2. Divide by 2 – (93+98)/2 = 95,5
3. Median = 95,5

Characteristics:

- Unaffected by extreme scores
- Relatively unaffected by skewed distribution
$5.39
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada


Documento también disponible en un lote

Reseñas de compradores verificados

Se muestran los 2 comentarios
4 año hace

5 año hace

5.0

2 reseñas

5
2
4
0
3
0
2
0
1
0
Reseñas confiables sobre Stuvia

Todas las reseñas las realizan usuarios reales de Stuvia después de compras verificadas.

Conoce al vendedor

Seller avatar
Los indicadores de reputación están sujetos a la cantidad de artículos vendidos por una tarifa y las reseñas que ha recibido por esos documentos. Hay tres niveles: Bronce, Plata y Oro. Cuanto mayor reputación, más podrás confiar en la calidad del trabajo del vendedor.
lisajin Universiteit van Amsterdam
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
39
Miembro desde
5 año
Número de seguidores
34
Documentos
6
Última venta
2 año hace

3.9

10 reseñas

5
3
4
4
3
2
2
1
1
0

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes