100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4,6 TrustPilot
logo-home
Examen

C723 QUANTITATIVE ANALYSIS FOR BUSINESS 2025

Puntuación
-
Vendido
-
Páginas
32
Grado
A+
Subido en
04-07-2025
Escrito en
2024/2025

C723 QUANTITATIVE ANALYSIS FOR BUSINESS 2025 SUMMARY AND VERIFIED CORRECT ANSWERS Comprehensive Summary Guide for WGU Objective Assessment Introduction This comprehensive summary provides 150 verified questions with correct answers and concise explanations for the C723 Quantitative Analysis for Business Objective Assessment (OA) at Western Governors University (WGU) for the 2025 exam cycle. Aligned with WGU’s curriculum and sourced from platforms like Quizlet and Course Hero, it covers Quantitative Analysis Basics, Statistical Analysis, Linear Programming, Inventory Management, and Decision Models. Presented in vibrant purple text with silver accents for clarity and engagement, it reflects the latest exam standards. The concise explanations ensure students grasp key concepts efficiently to excel in the OA.

Mostrar más Leer menos
Institución
Quantitative Analysis
Grado
Quantitative Analysis











Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Escuela, estudio y materia

Institución
Quantitative Analysis
Grado
Quantitative Analysis

Información del documento

Subido en
4 de julio de 2025
Número de páginas
32
Escrito en
2024/2025
Tipo
Examen
Contiene
Preguntas y respuestas

Temas

Vista previa del contenido

C723 QUANTITATIVE ANALYSIS FOR
BUSINESS 2025
SUMMARY AND VERIFIED CORRECT
ANSWERS




Comprehensive Summary Guide for WGU Objective Assessment




Updated for 2025 Exam Cycle
Curated by Business Analysis Experts

,Contents
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Quantitative Analysis Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1 Question 1: Defining Quantitative Analysis . . . . . . . . . . . . . . . . . 5
2.2 Question 2: When to Use Qualitative Analysis . . . . . . . . . . . . . . . 5
2.3 Question 3: Car Seat Design . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.4 Question 4: Weather Prediction . . . . . . . . . . . . . . . . . . . . . . . . 6
2.5 Question 5: Temperature Variable Type . . . . . . . . . . . . . . . . . . . 6
2.6 Question 6: Model Hesitation . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.7 Question 7: Expression Order . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.8 Question 8: Quantitative Decision . . . . . . . . . . . . . . . . . . . . . . . 6
2.9 Question 9: Qualitative Decision . . . . . . . . . . . . . . . . . . . . . . . 6
2.10 Question 10: Advertising Variable . . . . . . . . . . . . . . . . . . . . . . 7
2.11 Question 11: Quantitative Tool . . . . . . . . . . . . . . . . . . . . . . . . 7
2.12 Question 12: Data-Driven Choice . . . . . . . . . . . . . . . . . . . . . . . 7
2.13 Question 13: Qualitative Drawback . . . . . . . . . . . . . . . . . . . . . . 7
2.14 Question 14: Quantitative Benefit . . . . . . . . . . . . . . . . . . . . . . . 7
2.15 Question 15: Numerical Model Role . . . . . . . . . . . . . . . . . . . . . 7
2.16 Question 16: Production Speed Variable . . . . . . . . . . . . . . . . . . . 8
2.17 Question 17: Productivity Analysis . . . . . . . . . . . . . . . . . . . . . . 8
2.18 Question 18: Problem Clarity . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.19 Question 19: Expression Result . . . . . . . . . . . . . . . . . . . . . . . . 8
2.20 Question 20: Qualitative Preference . . . . . . . . . . . . . . . . . . . . . 8
2.21 Question 21: Quantitative Data . . . . . . . . . . . . . . . . . . . . . . . . 8
2.22 Question 22: Price Variable . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.23 Question 23: Model Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.24 Question 24: Forecasting Method . . . . . . . . . . . . . . . . . . . . . . . 9
2.25 Question 25: Qualitative Bias . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.26 Question 26: Numerical Reliability . . . . . . . . . . . . . . . . . . . . . . 9
2.27 Question 27: Service Speed Variable . . . . . . . . . . . . . . . . . . . . . 9
2.28 Question 28: Quantitative Problem . . . . . . . . . . . . . . . . . . . . . . 10
2.29 Question 29: Model Starting Point . . . . . . . . . . . . . . . . . . . . . . 10
2.30 Question 30: Operation Result . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.31 Question 31: Quantitative Suitability . . . . . . . . . . . . . . . . . . . . . 10
2.32 Question 32: Qualitative Suitability . . . . . . . . . . . . . . . . . . . . . . 10
2.33 Question 33: Data Quality . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.34 Question 34: Sales Variable . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.35 Question 35: Quantitative Precision . . . . . . . . . . . . . . . . . . . . . 11

3 Statistical Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.1 Question 36: Probability Concept . . . . . . . . . . . . . . . . . . . . . . . 11
3.2 Question 37: Expected Outcome . . . . . . . . . . . . . . . . . . . . . . . . 11
3.3 Question 38: Regression Purpose . . . . . . . . . . . . . . . . . . . . . . . 11
3.4 Question 39: Combined Probability . . . . . . . . . . . . . . . . . . . . . . 12
3.5 Question 40: Dataset Mean . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.6 Question 41: Variance Role . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.7 Question 42: Standard Deviation Role . . . . . . . . . . . . . . . . . . . . 12
3.8 Question 43: Correlation Strength . . . . . . . . . . . . . . . . . . . . . . 12


1

,C723 Quantitative Analysis for Business Summary 2025 July 4, 2025


3.9 Question 44: Regression Prediction . . . . . . . . . . . . . . . . . . . . . . 12
3.10 Question 45: Expected Value Table . . . . . . . . . . . . . . . . . . . . . . 13
3.11 Question 46: Normal Curve . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.12 Question 47: Statistical Reliability . . . . . . . . . . . . . . . . . . . . . . 13
3.13 Question 48: Confidence Range . . . . . . . . . . . . . . . . . . . . . . . . 13
3.14 Question 49: Hypothesis Purpose . . . . . . . . . . . . . . . . . . . . . . . 13
3.15 Question 50: Median Value . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.16 Question 51: Mutually Exclusive Events . . . . . . . . . . . . . . . . . . . 14
3.17 Question 52: Regression Slope . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.18 Question 53: Sample Size Effect . . . . . . . . . . . . . . . . . . . . . . . . 14
3.19 Question 54: Outlier Impact . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.20 Question 55: Joint Probability . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.21 Question 56: Z-Score Role . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.22 Question 57: T-Test Application . . . . . . . . . . . . . . . . . . . . . . . . 15
3.23 Question 58: Chi-Square Application . . . . . . . . . . . . . . . . . . . . . 15
3.24 Question 59: Multiple Regression . . . . . . . . . . . . . . . . . . . . . . . 15
3.25 Question 60: Data Skewness . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.26 Question 61: Business Probability . . . . . . . . . . . . . . . . . . . . . . . 15
3.27 Question 62: Variance Computation . . . . . . . . . . . . . . . . . . . . . 15
3.28 Question 63: Correlation Bounds . . . . . . . . . . . . . . . . . . . . . . . 16
3.29 Question 64: Expected Value Role . . . . . . . . . . . . . . . . . . . . . . . 16
3.30 Question 65: Normal Distribution Use . . . . . . . . . . . . . . . . . . . . 16
3.31 Question 66: Test Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.32 Question 67: Confidence Level Meaning . . . . . . . . . . . . . . . . . . . 16
3.33 Question 68: Sampling Bias . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.34 Question 69: P-Value Meaning . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.35 Question 70: Regression Constraint . . . . . . . . . . . . . . . . . . . . . . 17

4 Linear Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.1 Question 71: Linear Programming Concept . . . . . . . . . . . . . . . . . 17
4.2 Question 72: Objective Function Role . . . . . . . . . . . . . . . . . . . . 17
4.3 Question 73: Constraint Purpose . . . . . . . . . . . . . . . . . . . . . . . 17
4.4 Question 74: Feasible Area . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.5 Question 75: Optimization Objective . . . . . . . . . . . . . . . . . . . . . 18
4.6 Question 76: Linear Programming Use . . . . . . . . . . . . . . . . . . . . 18
4.7 Question 77: Constraint Categories . . . . . . . . . . . . . . . . . . . . . . 18
4.8 Question 78: Optimal Point . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.9 Question 79: Graphical Solution . . . . . . . . . . . . . . . . . . . . . . . . 18
4.10 Question 80: Simplex Algorithm . . . . . . . . . . . . . . . . . . . . . . . . 19
4.11 Question 81: Binding Limit . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.12 Question 82: Non-Binding Limit . . . . . . . . . . . . . . . . . . . . . . . . 19
4.13 Question 83: Shadow Value . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.14 Question 84: Business Optimization . . . . . . . . . . . . . . . . . . . . . 19
4.15 Question 85: Objective Form . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.16 Question 86: Constraint Example . . . . . . . . . . . . . . . . . . . . . . . 20
4.17 Question 87: Feasible Solution Set . . . . . . . . . . . . . . . . . . . . . . 20
4.18 Question 88: Corner Point Importance . . . . . . . . . . . . . . . . . . . . 20
4.19 Question 89: Linear Programming Limit . . . . . . . . . . . . . . . . . . 20
4.20 Question 90: Production Efficiency . . . . . . . . . . . . . . . . . . . . . . 20
4.21 Question 91: Constraint Breach . . . . . . . . . . . . . . . . . . . . . . . . 20


Page 2 of 31

, C723 Quantitative Analysis for Business Summary 2025 July 4, 2025


4.22 Question 92: Multi-Variable Solution . . . . . . . . . . . . . . . . . . . . . 21
4.23 Question 93: Resource Optimization . . . . . . . . . . . . . . . . . . . . . 21
4.24 Question 94: Objective Example . . . . . . . . . . . . . . . . . . . . . . . . 21
4.25 Question 95: Graphical Method Limit . . . . . . . . . . . . . . . . . . . . 21
4.26 Question 96: Slack Variable Role . . . . . . . . . . . . . . . . . . . . . . . 21
4.27 Question 97: Dual Problem Role . . . . . . . . . . . . . . . . . . . . . . . . 21
4.28 Question 98: Sensitivity Analysis Role . . . . . . . . . . . . . . . . . . . . 22
4.29 Question 99: Programming Tools . . . . . . . . . . . . . . . . . . . . . . . 22
4.30 Question 100: Optimal Value Example . . . . . . . . . . . . . . . . . . . . 22

5 Inventory Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
5.1 Question 101: Inventory Management Objective . . . . . . . . . . . . . 22
5.2 Question 102: EOQ Definition . . . . . . . . . . . . . . . . . . . . . . . . . 22
5.3 Question 103: EOQ Formula . . . . . . . . . . . . . . . . . . . . . . . . . . 23
5.4 Question 104: Holding Cost Definition . . . . . . . . . . . . . . . . . . . . 23
5.5 Question 105: Ordering Cost Definition . . . . . . . . . . . . . . . . . . . 23
5.6 Question 106: EOQ Example . . . . . . . . . . . . . . . . . . . . . . . . . . 23
5.7 Question 107: Total Cost Components . . . . . . . . . . . . . . . . . . . . 23
5.8 Question 108: Reorder Trigger . . . . . . . . . . . . . . . . . . . . . . . . . 23
5.9 Question 109: Safety Stock Role . . . . . . . . . . . . . . . . . . . . . . . . 24
5.10 Question 110: Inventory Model Purpose . . . . . . . . . . . . . . . . . . . 24
5.11 Question 111: Lead Time Definition . . . . . . . . . . . . . . . . . . . . . 24
5.12 Question 112: Stockout Cost Definition . . . . . . . . . . . . . . . . . . . . 24
5.13 Question 113: EOQ Assumption . . . . . . . . . . . . . . . . . . . . . . . . 24
5.14 Question 114: Inventory Turnover Definition . . . . . . . . . . . . . . . 24
5.15 Question 115: Carrying Cost Example . . . . . . . . . . . . . . . . . . . . 25
5.16 Question 116: Order Frequency Calculation . . . . . . . . . . . . . . . . 25
5.17 Question 117: EOQ Model Limit . . . . . . . . . . . . . . . . . . . . . . . . 25
5.18 Question 118: Just-In-Time Approach . . . . . . . . . . . . . . . . . . . . 25
5.19 Question 119: ABC Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.20 Question 120: Reorder Point Example . . . . . . . . . . . . . . . . . . . . 25
5.21 Question 121: Safety Stock Purpose . . . . . . . . . . . . . . . . . . . . . . 26
5.22 Question 122: Inventory Cost Types . . . . . . . . . . . . . . . . . . . . . 26
5.23 Question 123: EOQ Sensitivity . . . . . . . . . . . . . . . . . . . . . . . . . 26
5.24 Question 124: Inventory Benchmarking . . . . . . . . . . . . . . . . . . . 26
5.25 Question 125: Cycle Stock Definition . . . . . . . . . . . . . . . . . . . . . 26
5.26 Question 126: EOQ Cost Balance . . . . . . . . . . . . . . . . . . . . . . . . 26
5.27 Question 127: Lead Time Demand . . . . . . . . . . . . . . . . . . . . . . 27
5.28 Question 128: Inventory Model Example . . . . . . . . . . . . . . . . . . 27
5.29 Question 129: Stockout Prevention . . . . . . . . . . . . . . . . . . . . . . 27
5.30 Question 130: Turnover Calculation . . . . . . . . . . . . . . . . . . . . . 27

6 Decision Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
6.1 Question 131: Decision Tree Role . . . . . . . . . . . . . . . . . . . . . . . 27
6.2 Question 132: Expected Value Use . . . . . . . . . . . . . . . . . . . . . . 28
6.3 Question 133: Decision Tree Application . . . . . . . . . . . . . . . . . . 28
6.4 Question 134: Payoff Table Definition . . . . . . . . . . . . . . . . . . . . 28
6.5 Question 135: Expected Value Example . . . . . . . . . . . . . . . . . . . 28
6.6 Question 136: Decision Model Strength . . . . . . . . . . . . . . . . . . . 28
6.7 Question 137: Risk Assessment . . . . . . . . . . . . . . . . . . . . . . . . 28


Page 3 of 31
$12.99
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada

Conoce al vendedor
Seller avatar
Kanteez
1.0
(1)

Conoce al vendedor

Seller avatar
Kanteez Teachme2-tutor
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
6
Miembro desde
9 meses
Número de seguidores
0
Documentos
549
Última venta
2 meses hace
Kanteez Lab

Kanteez | The S-Tier Mastery Lab Welcome to your academic upgrade. I don’t just sell notes; I provide Elite Mastery Blueprints designed for the student who refuses to settle for "just passing." The Kanteez Philosophy * Cognitive Aesthetics: Most study guides are eyesores that cause mental fatigue. My materials are visually architected to reduce stress and maximize focus. When your study material looks good, you feel good—and when you feel good, you retain information with ease. * Hyper-Efficiency: Your time is your most finite resource. My guides are engineered to cut through the noise, allowing you to master dense, high-stakes exam content with surgical precision. * Elite Outcomes: I specialize in transforming complex topics into streamlined, S-tier resources. My mission is to help you reclaim your time, secure that A+, and step into the elite tier of your field. "Study smarter. Feel better. Dominate the exam." Transform your academic trajectory. Explore the collection below.

Lee mas Leer menos
1.0

1 reseñas

5
0
4
0
3
0
2
0
1
1

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes