100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4.2 TrustPilot
logo-home
Examen

ISYE 6414 Final Exam (Real Questions & Correct Answers) | Version 2 | 2022–2025| A+ Graded | Verified & Updated

Puntuación
-
Vendido
-
Páginas
20
Grado
A+
Subido en
01-07-2025
Escrito en
2024/2025

Prepare effectively with the ISYE 6414 Final Exam (Version 2) — featuring real exam questions and 100% verified correct answers based on the 2022–2024 curriculum. Accurately reflects the actual exam content from top industrial engineering/statistics programs (e.g., Georgia Tech) Includes step-by-step solutions and clear rationales Covers key statistical concepts: Descriptive and inferential statistics Confidence intervals & hypothesis testing Regression models ANOVA, distributions, MLE, and more Graded A — used and trusted by top-performing students Latest updated version (2024) — excellent for last-minute or in-depth prep Instant access for flexible and efficient studying This is the ultimate resource for mastering the ISYE 6414 final exam and improving your understanding of applied statistics in engineering and data analysis. ISYE 6414 Final Exam Version 2 real questions and answers ISYE 6414 statistics final test bank 2022–2024 ISYE 6414 exam with solutions and rationales Georgia Tech ISYE 6414 final exam updated ISYE 6414 Version 2 latest exam guide ISYE 6414 real final questions verified A+ graded ISYE 6414 exam prep materials ISYE 6414 statistical methods final version 2 Download ISYE 6414 final exam PDF ISYE final study guide with answers ISYE 6414 Final Exam (Real Questions & Correct Answers) | Version 2 | 2022–2025| A+ Graded | Verified & Updated Instructions This R Markdown file includes the questions, the empty code chunk sections for your code, and the text blocks for your responses. Answer the questions below by completing this R Markdown file. You must answer the questions using this file. You can change the format from pdf to Word or html and make other slight adjustments to get the file to knit but otherwise keep the formatting the same. Once you’ve finished answering the questions, submit your responses in a single knitted file (just like the homework peer assessments). There are 3 sections. Partial credit may be given if your code is correct but your conclusion is incorrect or vice versa. Next Steps: 1. Save this .Rmd file in your R working directory - the same directory where you will download the data file into. Having both files in the same directory will help in reading the .csv file. 2. Read the question and create the R code necessary within the code chunk section immediately below each question. Knitting this file will generate the output and insert it into the section below the code chunk. 3. Type your code and/or answer(s) to the questions in the text block provided immediately after the question prompt. 4. We recommend knitting the file often not only at the end of the exam to avoid working through knitting problems right before the exam submission. We will apply a 10% grade reduction if you will not submit the knitted file. We will also apply 20% grade reduction if you don’t submit the file via Canvas. 5. Submit the knitted file on Canvas. Example Question Format: (8a) This will be the exam question - each question is already copied from Canvas and inserted into individual text blocks below, you do not need to copy/paste the questions from the online Canvas exam. Response to question (8a): # Example code chunk area. Enter your code below the comment and # between the ```{r} and ``` This is the section where you type your written answers to the question. Depending on the question asked, your typed response may be a number, a list of variables, a few sentences, or a combination of these elements. Ready? Let’s begin. We wish you the best of luck! Final Exam Part 2 - Data Set Background For this exam, you will be building a logistic regression model to predict if an individual has heart disease, and you will be building a standard linear regression model to predict resting blood pressure. The data set consists of the following 10 variables: 1. age: age in years 2. sex: (M, F) 3. cp: chest pain type 4. trestbps: resting blood pressure (in mm Hg on admission to the hospital) 5. chol: serum cholestoral in mg/dl 6. fbs: (fasting blood sugar > 120 mg/dl) (1 = true; 0 = false) 7. restecg: resting electrocardiographic results (3 levels) 8. thalach: maximum heart rate achieved 9. exang: exercise induced angina (1 = yes; 0 = no) 10. oldpeak: ST depression induced by exercise relative to rest 11. slope: the slope of the peak exercise ST segment 12. ca: number of major vessels (0-3) colored by flourosopy 13. target: have disease or not (1=yes, 0=no) Read the data and answer the questions below. Read Data # Import the libraries library(car) ## Loading required package: carData library(glmnet) ## Loading required package: Matrix ## Loaded glmnet 3.0-2 # Ensure that the sampling type is correct RNGkind(="Rejection") # Read the data data = ('', header= TRUE) # Create a dummy variable for males data$sexM = ifelse(data$sex=='M', 1, 0) data$sex = NULL # Split into training and testing sets (6414) smp_siz = floor(0.75*nrow(data)) train_ind = sample(seq_len(nrow(data)),size = smp_siz) train = data[train_ind,] test = data[-train_ind,] 1: 19pts - Classification For this section you will be building logistic regression models that classify whether an individual has heart disease. For GLMs, we need replications in order to perform residual analysis. The following code aggregates the training data using a subset of the predictors to ensure that we have replications. # Aggregate the training data .n = aggregate(target~sexM+exang+slope+ca,data=train,FUN=length) .y = aggregate(target~sexM+exang+slope+ca,data=train,FUN=sum) = cbind(.y,total=.n$target) $t = $target/$total $target=NULL head(,1) ## sexM exang slope ca total t ## 1 1 0 0 0 5 0.8 (1a) 3pts - Build a logistic regression model (use logit link function) called model1 . For this model use the data set with t as the response variable and sexM, exang, slope, and ca as predictors. Remember the replications. Display the model summary. Response to question (1a): # Your code here... model1 = glm(t~sexM+exang+slope+ca, family=binomial, weights=total, data=) summary(model1) ## ## Call: ## glm(formula = t ~ sexM + exang + slope + ca, family = binomial, ## data = , weights = total) ## ## Deviance Residuals: ## Min 1Q Median 3Q Max ## -2.5865 -0.8072 -0.2346 1.2196 2.6835 ## ## Coefficients: ## Estimate Std. Error z value Pr(>|z|) ## (Intercept) 0.9330 0.5674 1.644 0.100134 ## sexM -1.5685 0.4174 -3.758 0.000172 *** ## exang -1.6133 0.3679 -4.384 1.16e-05 *** ## slope 1.0827 0.2875 3.766 0.000166 *** ## ca -0.7874 0.1812 -4.346 1.39e-05 *** ## --- ## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1 ## ## (Dispersion parameter for binomial family taken to be 1) ## ## Null deviance: 162.286 on 37 degrees of freedom ## Residual deviance: 63.197 on 33 degrees of freedom ## AIC: 107.32 ## ## Number of Fisher Scoring iterations: 4 Interpretation of Logistic Regression Model (model1) You’ve correctly fit a logistic regression model using the logit link on the aggregated dataset. Here's a breakdown of what the output means and key insights: ________________________________________ Model Specification: r CopyEdit model1 = glm(t ~ sexM + exang + slope + ca, family = binomial, weights = total, data = ) • t: Proportion of individuals with heart disease in each group. • weights = total: Accounts for the number of individuals (replications) in each aggregated group. • Predictors: o sexM: Male gender o exang: Exercise-induced angina o slope: Slope of the ST segment o ca: Number of major vessels colored by fluoroscopy ________________________________________ Model Summary: Coefficient Estimate Std. Error z-value p-value Significance Intercept 0.9330 0.5674 1.644 0.1001 . sexM -1.5685 0.4174 -3.758 0.0002 *** exang -1.6133 0.3679 -4.384 1.16e-05 *** slope 1.0827 0.2875 3.766 0.0002 *** ca -0.7874 0.1812 -4.346 1.39e-05 *** ________________________________________

Mostrar más Leer menos
Institución
Grado










Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Escuela, estudio y materia

Institución
Grado

Información del documento

Subido en
1 de julio de 2025
Número de páginas
20
Escrito en
2024/2025
Tipo
Examen
Contiene
Preguntas y respuestas

Temas

Vista previa del contenido

ISYE 6414 Final Exam (Real Questions &
Correct Answers) | Version 2 | 2022–2025|
A+ Graded | Verified & Updated

Instructions
This R Markdown file includes the questions, the empty code chunk sections for your code, and
the text blocks for your responses. Answer the questions below by completing this R Markdown
file. You must answer the questions using this file. You can change the format from pdf to Word
or html and make other slight adjustments to get the file to knit but otherwise keep the formatting
the same. Once you’ve finished answering the questions, submit your responses in a single knitted
file (just like the homework peer assessments).
There are 3 sections. Partial credit may be given if your code is correct but your conclusion is
incorrect or vice versa.
Next Steps:
1. Save this .Rmd file in your R working directory - the same directory where you will
download the heart.csv data file into. Having both files in the same directory will help
in reading the .csv file.
2. Read the question and create the R code necessary within the code chunk section
immediately below each question. Knitting this file will generate the output and insert it
into the section below the code chunk.
3. Type your code and/or answer(s) to the questions in the text block provided immediately
after the question prompt.
4. We recommend knitting the file often not only at the end of the exam to avoid working
through knitting problems right before the exam submission. We will apply a 10% grade
reduction if you will not submit the knitted file. We will also apply 20% grade reduction
if you don’t submit the file via Canvas.
5. Submit the knitted file on Canvas.
Example Question Format:



1

,(8a) This will be the exam question - each question is already copied from Canvas and inserted
into individual text blocks below, you do not need to copy/paste the questions from the online
Canvas exam.
Response to question (8a):
# Example code chunk area. Enter your code below the comment and
# between the ```{r} and ```
This is the section where you type your written answers to the question. Depending on the
question asked, your typed response may be a number, a list of variables, a few sentences, or a
combination of these elements.
Ready? Let’s begin. We wish you the best of luck!

Final Exam Part 2 - Data Set Background
For this exam, you will be building a logistic regression model to predict if an individual has heart
disease, and you will be building a standard linear regression model to predict resting blood
pressure.
The heart.csv data set consists of the following 10 variables:
1. age: age in years
2. sex: (M, F)

3. cp: chest pain type

4. trestbps: resting blood pressure (in mm Hg on admission to the hospital)

5. chol: serum cholestoral in mg/dl

6. fbs: (fasting blood sugar > 120 mg/dl) (1 = true; 0 = false)

7. restecg: resting electrocardiographic results (3 levels)
8. thalach: maximum heart rate achieved

9. exang: exercise induced angina (1 = yes; 0 = no)

10. oldpeak: ST depression induced by exercise relative to rest

11. slope: the slope of the peak exercise ST segment

12. ca: number of major vessels (0-3) colored by flourosopy

13. target: have disease or not (1=yes, 0=no)
Read the data and answer the questions below.




2

, Read Data
# Import the libraries
library(car)
## Loading required package: carData library(glmnet)
## Loading required package: Matrix
## Loaded glmnet 3.0-2
# Ensure that the sampling type is correct
RNGkind(sample.kind="Rejection")
# Read the data
data = read.csv('heart.csv', header= TRUE)
# Create a dummy variable for males
data$sexM = ifelse(data$sex=='M', 1, 0)
data$sex = NULL

# Split into training and testing sets
set.seed(6414)
smp_siz = floor(0.75*nrow(data))
train_ind = sample(seq_len(nrow(data)),size =
smp_siz) train = data[train_ind,] test = data[-
train_ind,]


1: 19pts - Classification
For this section you will be building logistic regression models that classify whether an individual
has heart disease. For GLMs, we need replications in order to perform residual analysis. The
following code aggregates the training data using a subset of the predictors to ensure that we have
replications.
# Aggregate the training data
train.agg.n = aggregate(target~sexM+exang+slope+ca,data=train,FUN=length)
train.agg.y = aggregate(target~sexM+exang+slope+ca,data=train,FUN=sum) train.agg =
cbind(train.agg.y,total=train.agg.n$target) train.agg$prob.target =
train.agg$target/train.agg$total train.agg$target=NULL

head(train.agg,1)
## sexM exang slope ca total prob.target
## 1 1 0 0 0 5 0.8

(1a) 3pts - Build a logistic regression model (use logit link function) called model1 . For this model
use the train.agg data set with prob.target as the response variable and sexM, exang, slope, and
ca as predictors.
Remember the replications. Display the model summary.
Response to question (1a):



3
$16.99
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada

Conoce al vendedor

Seller avatar
Los indicadores de reputación están sujetos a la cantidad de artículos vendidos por una tarifa y las reseñas que ha recibido por esos documentos. Hay tres niveles: Bronce, Plata y Oro. Cuanto mayor reputación, más podrás confiar en la calidad del trabajo del vendedor.
BrightmindGuides Chamberlain College Of Nursing
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
139
Miembro desde
1 año
Número de seguidores
3
Documentos
683
Última venta
5 días hace
BRIGHTMIND GUIDES

I am so glad you’ve found us! Here, you’ll discover a wide range of expertly crafted learning documents designed to make your study journey easier and more efficient. Whether you're a student, professional, or lifelong learner, we have resources to help you succeed. In case of any enquiry feel free - edwardmacharia112 @g mail .com Take a look around, and feel free to reach out if you need any assistance. We're here to help you every step of the way. Happy learning, and thank you for choosing us! WELCOME ALL ....FEEL FREE

Lee mas Leer menos
4.7

30 reseñas

5
27
4
1
3
0
2
0
1
2

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes