100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4.2 TrustPilot
logo-home
Examen

APM3701 Assignment 2 Detailed Solutions Due 8 August 2025

Puntuación
-
Vendido
-
Páginas
9
Grado
A+
Subido en
17-06-2025
Escrito en
2024/2025

Unlock your academic potential with the ultimate study resource for APM3701 Assignment 2 Detailed Solutions Due 8 August 2025 This 100% exam-ready assignment come with expert-verified answers, in-depth explanations, and reliable references, meticulously crafted to ensure you grasp every concept with ease. Designed for clarity and precision, these fully solved material is your key to mastering any subject and acing your exams. Don’t just study—study smart. Grab your path to academic success today and elevate your grades with confidence. QUESTION 1 Consider the heat flow in an horizontal rod of length L units and heat conductivity 1. We assume that initially the rod was submerged in a meduim where the temperature at each point x of the rod is described by the function f (x) . We also suppose that the left and the right ends of the rod are in contact with media which temperatures change with time and are described by the functions g1 (t) and g2 (t) respectively. (a) Write down the initial-boundary problem satisfied by the temperature distribution u (x, t) in the rod at any point x and time t (Explain all the meaning of the variables and parameters used). (5 Marks) (b) Suppose that f, g1, g2 are bounded, there exist constants m and M such that for all x in the domain of g1 and g2, and all t ≥ 0, we have m ≤ f (x) ≤ M;m ≤ g1 (x) ≤ M;m ≤ g2 (x) ≤ M; and the temperature u (x, t) solution of the IBVP described above satisfies the inequalities m ≤ u (x, t) ≤ M; for all x and t ≥ 0. Show that the solution u (x, t) of the heat problem described above is unique. (Explain clearly all the steps (10 Marks) (c) Suppose that u1 (x, t) and u2 (x, t) are solutions of the heat problem above (with different initial and boundary conditions) are such that u1 (0, t) ≤ u2 (0, t) , u1 (L, t) ≤ u2 (L, t) , and u1 (x, 0) ≤ u2 (x, 0) . Show that u1 (x, t) ≤ u2 (x, t) for all 0 ≤ x ≤ L and all t ≥ 0. (10 Marks) [25 Marks] QUESTION 2 Find the displacement u (x, t) of a semi–infinite vibrating string, if the finite end is fixed, the initial velocity is zero and the initial displacement is xex at every point x of the string. (Explain all the details) [25 Marks] QUESTION 3 When there is heat transfer from the lateral side of an infinite cylinder of radius a into a surrounding medium, the temperature inside the rod depends upon the time t and the distance r from its longitudinal axis (i.e. the axis through the centre and parallel to the lateral side). (a) Write down the partial differential equation that models this problem. (4 Marks) (b) Suppose that the surrounding medium is ice (at temperature zero) and the initial temperature is constant at every point. Derive the initial and boundary conditions. [Hint: For the boundary condition use Newton’s law of cooling.] (7 Marks) (c) Solve the initial boundary value problem obtained in (a) and (b). (14 Marks) [25 Marks] QUESTION 4 Find the displacement u (r, t) of a circular membrane of radius c clamped along its circumference if its initial displacement is zero and the circular membrane is given an constant initial velocity v in the upward direction. [25 Marks] TOTAL: [100 Marks]

Mostrar más Leer menos
Institución
Grado









Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Libro relacionado

Escuela, estudio y materia

Institución
Grado

Información del documento

Subido en
17 de junio de 2025
Número de páginas
9
Escrito en
2024/2025
Tipo
Examen
Contiene
Preguntas y respuestas

Temas

Vista previa del contenido

APM3701
Assignment 2
Detailed Solutions
Due 8 August 2025

, APM3701

Assignment 2

Due 8 August 2025




Question 1: Heat Flow in a Horizontal Rod (25 Marks)

(a) Initial-Boundary Value Problem (5 Marks)

Consider a horizontal rod of length L with thermal conductivity 1. Let u(x,t) denote the
temperature at position x ∈ [0,L] and time t ≥ 0. The temperature evolves according to
the one-dimensional heat equation:



Initial condition:

u(x,0) = f(x), 0≤x≤L

Boundary conditions:

u(0,t) = g1(t), u(L,t) = g2(t), t ≥ 0

Where:
[noitemsep]u(x,t): Temperature at position x and time t f(x): Initial temperature
distribution g1(t),g2(t): Boundary temperatures at ends x =

0 and x = L x: Spatial variable t: Temporal variable

(b) Uniqueness of the Solution (10 Marks)

Suppose two solutions u1(x,t) and u2(x,t) satisfy the same IBVP. Define the difference:

w(x,t) = u1(x,t) − u2(x,t)

Then w(x,t) satisfies the homogeneous heat equation:
$3.91
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada

Conoce al vendedor

Seller avatar
Los indicadores de reputación están sujetos a la cantidad de artículos vendidos por una tarifa y las reseñas que ha recibido por esos documentos. Hay tres niveles: Bronce, Plata y Oro. Cuanto mayor reputación, más podrás confiar en la calidad del trabajo del vendedor.
BeeNotes teachmetutor
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
283
Miembro desde
6 meses
Número de seguidores
0
Documentos
486
Última venta
1 semana hace
BeeNotes

BeeNotes: Buzzing Brilliance for Your Studies Discover BeeNotes, where hard-working lecture notes fuel your academic success. Our clear, concise study materials simplify complex topics and help you ace exams. Join the hive and unlock your potential with BeeNotes today!

4.1

36 reseñas

5
21
4
3
3
8
2
1
1
3

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes