100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4.2 TrustPilot
logo-home
Notas de lectura

Tensor Networks (TUM) - Script / Notes

Puntuación
-
Vendido
-
Páginas
32
Subido en
17-06-2025
Escrito en
2022/2023

A nicely written script for the lecture "Tensor Networks" offered by Prof. Christian B. Mendl at TUM. It includes the following topics: Mathematical Framework and graphical diagrams, Canonical tensor formats and low rang approximation, Tucker decomposition, Tensor train / Matrix product states (MPS), Applications to quantum and condensed matter physics, entanglement and the area law, DMRG algorithm, TEBD algorithm, Application to quantum computers, Gradient computation and relations to machine learning techniques,

Mostrar más Leer menos
Institución
Grado











Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Escuela, estudio y materia

Institución
Estudio
Grado

Información del documento

Subido en
17 de junio de 2025
Número de páginas
32
Escrito en
2022/2023
Tipo
Notas de lectura
Profesor(es)
Prof. christian b. mendl
Contiene
Todas las clases

Temas

Vista previa del contenido

Prof .
Dr .
Christian B .
Mend) IN2388




Tensor Networks




Tensor
Networks Lecture

, Mathematical framework
2
. and
graphical diagrams
2
.1 Linear
Algebra fundamentals

·
Vector
Spaces : # ,
R ,
v = (le ,
or <(20 1] , ,
1) :

space of continuous functions : 10 17.
+
K



·
Matrices : AckM , A =
Ca

·
Matrix-vector product : A .




v
=
Can
where A be
interpreted linear from K"-kM
can as a
operator


Remark :
We will formulate definitions ,
theorems, . . .
in terms of
complex numbers ;




this includes real numbers as
a specialcase

V




r)
coss) in =




V C > VxV K
Inner product and :
vector
-
nor m on ...
space
=
· a




can be defined
abstractly in this course : (V .
W) = W
; Vrwe -W




↑ Note 7, ) linear its second but it anti-linear in its first Car W) &
*

S Wh
argument argument
is
=
:
in is :
,
, ,




C ,
> induces a
nam on V via NVI = Fo =K
= Euclidean length




eg .
c (20 17 .
,
4) :
<
fig)
=
So fix) g(x) dx




/ IvII I wll
inequality Kr Vv V
>
Cauchy-Schwartz :
w <
w =
.




, ,




Adjoint (conjugate transpose) of a matrix : At =

( ** )


>
-



A =



Cam

intritioMinor
set
Note :
<v
,
Aw) =< Atr ,
w ) wekm req
,




column
A matrix At KUM is called Hermitian (or self-adjoint) if At = A
nu2 !
Unitary Matrices : He


It is
Kath

the inverse
is called


of
unitary
U
if UTU =
I
cidentity maries ,
=>
U describes a
change
of basis which preserves the length of rectors




Note :
UTH =
I Unt =
I




Normal Matrix At CMM called it commutes A A += At A
normal if with its adjoint
: :
is
-




,



unitary and heritian normal
particular matrix is
~>
in :
every




(1 *, KV
Eigenvalues and
Eigenvectors Let A them vector called
:
a non-zero ve is an
eigenvector of A

with 1 K if Av 1
corresponding eigenvalue
=




Determinant of a
square Matrix At QUXU :
det (A) =



rEsu Sgn (0) apoc
with Su of permutations of [1 n)
group
:
....

,Properties :
·

A is invertible (column or now rectors a re
linearly independent
if det (A) + 0
it and
only
·
det CAT) =
det (A)
·
for all A ,
Be K" :
det (A
.




B) =
det(A) -




det (B)


Relevance for
eigenvalues
:




Av =
Av El
(AI-A)v =
0 = >
XI -




A is not invertible

= v
det (Al-A) =
0
=
"characteristic polynomial" of A



T
fundamental theorem of
algebra guarantees that there exist n
complex roots of


the characteristic polynomial =
eigenvalves ...




SPECTRAL DECOMPOSITION THEOREM

Any normal matrix At Kan is
unitarily diagonalizable ,
i .
e .
there exists a
unitary Matrix Ue purn


and
eigenvalves 1 .... An D such that A U .

= U .

(4 ...an ) ,
equivalently
:




An)
F
A =
U .



( ·
Ut ·




Conversely , every
matrix
representable in this form is nor mal .




A eart
:
The column rectors of U =
(Un : ...: Un) are a basis of
eigenvectors of A ,
since


AU U ( "... (n) that A
AjUj for
stating Uj jo
= =


is
.

.




. . .
n




Remark For form different
general matrices
cigenrectors
basis
eigenvectors
of
:
not
might
a
,
,
-




eigenvalves
a re not
necessarily orthogonal to each other




Homitian



Any Hermitian Matrix A
unitarily diagonalizable ( ...a ) =
=>
is
,




and its real
eigenvalues
:
a re




The At Dr
spectral radius of a
square Matrix is the
largest absolute value

of the of
eigenvalues A :




p(A) [Ixel In 19 on of A
with A
eigenvalves
:
=
Max .... ...




* herritian Matrix At Dr called scridefinite if Ar > 20 Free ,
is
positive sv ,




thus the of likewise (v , x)
eigenvales non-negative for :
such Matrix are since
any eigenpair
a
,




* 11vK2 =
1 .



(v v> ,
=
<V ,
1v> =
<V , Arl 20



SINGULAR VALUE DECOMPOSITION THEOREM -


for
square natrices

Let Ae path be matrix then there exists unitary matrices U,V and list
square
a ,
a




real with On =0 called values ,
of numbers ....
On EF22 . . .




singular

such that A =
U (0 :

on) V
+




roof :seelecturenotea matrix Coven
singular
ones) !

, to
The SVD be
generalized Matrices :
Remark
-
:
can non-square



SINGULAR VALUE DECOMPOSITION THEOREM -




general
(MXK
men
Let A set k =
min (M ,
n) ,
then there exists linear isometries UE

and Venk and real values On
,
non-negative On . . .
with z -. On 20 ,




such that A =
U ( "... on) vt



#te Isometries are
generalizations of
unitary matrices
: :




Uekman with Man is called an
isometry if UtU = In
The columns of U =
(U
:
...: un) a re orthonormal
(CUjueL =
Gje) ,
but
if m -n
they cannot form a basis of I" .



of A
The rank is the dimension of the rector
space generated by
the column reators of A = number of values)
n o n -ze ro
singular

Remark SVD) becomes low-rank factorization if values
singular
:
a are ze ro
- many
land can hence be omitted) :





A u +
.... V

=





-onl
+w +



diag( .




MATRIX FUNCTIONS

Let f : -D function and At pren be
arbitrary be an normal
,
with
spectral decomposition A
=
U( n) Ut.



Then we define f(A) =

U(f(v) fan) :
Ut


Equivalently ,
if f admits a
power
series
expansion f(x) = 9X" * xeK,
then f(A) =

[09 : Al


for At C
Examples :
normal ....




·

et =
exp(A) = Al (note : et * =
AetA for teR)
·


# >
-
knen satisfies A =

A



DP
*
9
KRONECKER PRODUCT of two matrices At CMA ,
Be :




anT
. . .


CimB




a i (mPx nq
AB c

= . . .


am B




-
similarly for two rectors rel , we D :
vow
= ena
$9.87
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada


Documento también disponible en un lote

Conoce al vendedor

Seller avatar
Los indicadores de reputación están sujetos a la cantidad de artículos vendidos por una tarifa y las reseñas que ha recibido por esos documentos. Hay tres niveles: Bronce, Plata y Oro. Cuanto mayor reputación, más podrás confiar en la calidad del trabajo del vendedor.
AdelinaB Technische Universität München
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
59
Miembro desde
5 año
Número de seguidores
29
Documentos
35
Última venta
4 meses hace

4.3

8 reseñas

5
4
4
2
3
2
2
0
1
0

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes