100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4.2 TrustPilot
logo-home
Resumen

Summary CSE 575 Statistical Machine Learning Complete Notes & Exam Guide 2025 Edition

Puntuación
-
Vendido
1
Páginas
44
Subido en
28-05-2025
Escrito en
2024/2025

Master Statistical Machine Learning with this comprehensive 44-page guide for CSE 575. Updated for 2025, this document covers fundamental concepts including probability theory, linear models, Bayesian methods, SVMs, ensemble learning, unsupervised learning, model evaluation, and advanced topics like reinforcement learning. Designed for computer science students, it features clear explanations, key formulas, and practical examples to help you excel in exams and coursework. Perfect for rapid review and deep understanding.

Mostrar más Leer menos
Institución
Grado











Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Escuela, estudio y materia

Institución
Grado

Información del documento

Subido en
28 de mayo de 2025
Número de páginas
44
Escrito en
2024/2025
Tipo
Resumen

Temas

Vista previa del contenido

By: Ateeqa Khadam


CSE 575 Statistical Machine Learning -
Study Guide [2025]


Table of Contents
1. Introduction to Statistical Machine Learning
2. Probability and Statistics Fundamentals
3. Linear Models for Regression and Classification
4. Bayesian Methods
5. Kernel Methods and Support Vector Machines (SVMs)
6. Probabilistic Graphical Models
At


7. Dimensionality Reduction
8. Ensemble Methods
ee


9. Unsupervised Learning
10. Model Evaluation and Selection
11. Optimization Techniques in Machine Learning
qa



12. Advanced Topics
13. Applications of Statistical Machine Learning
Kh


14. Summary and Further Reading
ad



1. Introduction to Statistical Machine Learning
am



Overview of Machine Learning

Machine Learning (ML) is a subfield of artificial intelligence that focuses on developing
algorithms and statistical models that enable computer systems to improve their performance
on specific tasks through experience, without being explicitly programmed for every
scenario.

Key Definitions:

 Algorithm: A set of rules or instructions for solving a problem
 Model: A mathematical representation of a real-world process
 Training: The process of teaching an algorithm using data
 Prediction: Using a trained model to make estimates about new, unseen data

Statistical Machine Learning specifically emphasizes the probabilistic and statistical
foundations underlying ML algorithms. It treats learning as a statistical inference problem
where we aim to discover patterns and relationships in data while quantifying uncertainty.

,Types of Learning: Supervised, Unsupervised, Semi-supervised,
Reinforcement

Supervised Learning

In supervised learning, algorithms learn from labeled training data to make predictions or
decisions.

Characteristics:

 Input-output pairs (X, y) are provided during training
 Goal is to learn a mapping function f: X → y
 Performance can be directly measured against known correct answers

Types:

1. Classification: Predicting discrete class labels
o Example: Email spam detection (spam/not spam)
o Output: Categorical variables
At



2. Regression: Predicting continuous numerical values
o Example: House price prediction
ee



o Output: Real-valued numbers
qa



Mathematical Formulation: Given training data D = {(x₁, y₁), (x₂, y₂), ..., (xₙ, yₙ)}, find
function f such that f(x) ≈ y for new inputs.
Kh



Unsupervised Learning
ad


Algorithms find hidden patterns in data without labeled examples.
am


Characteristics:

 Only input data X is provided (no target labels)
 Goal is to discover hidden structure or patterns
 No direct measure of "correct" answer

Common Tasks:

1. Clustering: Grouping similar data points
2. Dimensionality Reduction: Finding lower-dimensional representations
3. Density Estimation: Modeling data distribution
4. Anomaly Detection: Identifying unusual patterns

Semi-supervised Learning

Combines small amounts of labeled data with large amounts of unlabeled data.

Motivation:

 Labeled data is expensive and time-consuming to obtain

,  Unlabeled data is abundant and cheap
 Leverages structure in unlabeled data to improve learning

Assumptions:

 Smoothness: Points close to each other likely have same label
 Cluster assumption: Data forms discrete clusters
 Manifold assumption: Data lies on low-dimensional manifold

Reinforcement Learning

Learning through interaction with an environment to maximize cumulative reward.

Key Components:

 Agent: The learner/decision maker
 Environment: External system agent interacts with
 State: Current situation of the agent
 Action: Choices available to agent
At



 Reward: Feedback signal from environment
ee



Goal: Learn policy π(s) → a that maximizes expected cumulative reward.
qa


Role of Statistics in Machine Learning

Statistics provides the theoretical foundation for machine learning by offering:
Kh



1. Probabilistic Framework: Modeling uncertainty and variability in data
ad


2. Inference Methods: Drawing conclusions from sample data about populations
3. Hypothesis Testing: Validating model assumptions and comparing models
4. Estimation Theory: Methods for parameter estimation and confidence intervals
am



5. Information Theory: Measuring information content and model complexity

Key Statistical Concepts in ML:

 Bias-Variance Tradeoff: Balancing underfitting and overfitting
 Maximum Likelihood Estimation: Parameter estimation method
 Bayesian Inference: Incorporating prior knowledge and updating beliefs
 Cross-Validation: Model selection and performance estimation
 Regularization: Preventing overfitting through complexity penalties

Summary - Introduction to Statistical Machine Learning: Statistical Machine Learning
combines computational algorithms with statistical theory to extract patterns from data. The
four main learning paradigms (supervised, unsupervised, semi-supervised, reinforcement)
address different types of problems and data availability scenarios. Statistics provides the
mathematical foundation for understanding uncertainty, making inferences, and validating
model performance. This statistical grounding distinguishes statistical ML from purely
algorithmic approaches by emphasizing probabilistic reasoning and principled model
selection.

, 2. Probability and Statistics Fundamentals
Probability Theory Basics

Probability theory provides the mathematical framework for reasoning under uncertainty,
which is fundamental to statistical machine learning.

Sample Spaces and Events

 Sample Space (Ω): Set of all possible outcomes of an experiment
 Event (A): Subset of the sample space
 Probability (P): Function that assigns real numbers to events

Axioms of Probability

For any events A and B:
At



1. Non-negativity: P(A) ≥ 0
ee


2. Normalization: P(Ω) = 1
3. Additivity: If A ∩ B = ∅, then P(A ∪ B) = P(A) + P(B)
qa



Conditional Probability and Independence
Kh


Conditional Probability: P(A|B) = P(A ∩ B) / P(B), provided P(B) > 0

Independence: Events A and B are independent if P(A ∩ B) = P(A) × P(B)
ad



Bayes' Theorem: P(A|B) = P(B|A) × P(A) / P(B)
am



This is fundamental to Bayesian machine learning approaches.

Random Variables and Distributions

Random Variables

A random variable X is a function that maps outcomes in the sample space to real numbers.

Types:

1. Discrete: Takes countable values (e.g., number of coin flips)
2. Continuous: Takes uncountable values (e.g., height, weight)

Probability Distributions

For Discrete Random Variables:

 Probability Mass Function (PMF): P(X = x)
$13.49
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada

Conoce al vendedor
Seller avatar
ayat2

Conoce al vendedor

Seller avatar
ayat2 Virtual university
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
1
Miembro desde
7 meses
Número de seguidores
0
Documentos
15
Última venta
3 meses hace
High-Quality Study Materials for IT & Computer Science Courses

Welcome to my Stuvia profile! I’m an undergraduate student pursuing a Bachelor\'s degree in Information Technology (BSIT), passionate about creating high-quality, exam-ready study materials.

0.0

0 reseñas

5
0
4
0
3
0
2
0
1
0

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes