100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4.2 TrustPilot
logo-home
Examen

CSS 200 Foundations of CS - Finals Mock Exam Review - UOPX 2025

Puntuación
-
Vendido
-
Páginas
35
Grado
A+
Subido en
28-05-2025
Escrito en
2024/2025

CSS 200 Foundations of CS - Finals Mock Exam Review - UOPX 2025CSS 200 Foundations of CS - Finals Mock Exam Review - UOPX 2025CSS 200 Foundations of CS - Finals Mock Exam Review - UOPX 2025

Institución
Grado











Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Escuela, estudio y materia

Institución
Grado

Información del documento

Subido en
28 de mayo de 2025
Número de páginas
35
Escrito en
2024/2025
Tipo
Examen
Contiene
Preguntas y respuestas

Temas

Vista previa del contenido

CSS 200 Foundations of Computer
Science

Finals Mock Exam Review

(Questions & Solutions)

2025




©2025

, Question 1:
A sorting algorithm selects the smallest element from an unsorted array
and swaps it with the first unsorted element in each iteration. In the
worst-case scenario, what is the time complexity of this algorithm?
- A. O(n)
- B. O(n log n)
- C. O(n²)
- D. O(2ⁿ)

ANS: C. O(n²)
Rationale: This description characterizes the selection sort algorithm,
whose worst-case (and best-case) time complexity is O(n²) because it
performs roughly n(n–1)/2 comparisons as the array is processed.

---

Question 2:
Which of the following computational models is considered the most
powerful among those discussed in the theory of computation?
- A. Finite automata
- B. Pushdown automata
- C. Turing machines
- D. Linear bounded automata

ANS: C. Turing machines
Rationale: Turing machines are the most powerful model of
computation, capable of simulating any algorithm, and serve as the
standard theoretical basis for defining what is computable.

---

Question 3:
The decision version of the Boolean satisfiability problem (SAT) is
©2025

,significant because it was the first problem to be proven NP-complete.
Which theorem does this result relate to?
- A. Rice’s Theorem
- B. Cook’s Theorem
- C. Gödel’s Incompleteness Theorem
- D. Bellman’s Principle of Optimality

ANS: B. Cook’s Theorem
Rationale: Cook’s Theorem established that the Boolean satisfiability
problem (SAT) is NP-complete, forming the foundation of NP-
completeness theory and its implications for P vs NP.

---

Question 4:
A computer scientist is analyzing an algorithm that solves a problem by
recursively dividing it into two subproblems of equal size. Which
recurrence relation best models the time complexity of this algorithm,
assuming linear time is spent on dividing and combining?
- A. T(n) = 2T(n/2) + O(n)
- B. T(n) = T(n - 1) + O(1)
- C. T(n) = T(n/2) + O(n²)
- D. T(n) = 2T(n/2) + O(1)

ANS: A. T(n) = 2T(n/2) + O(n)
Rationale: This recurrence models divide-and-conquer algorithms (e.g.,
merge sort) where the problem is divided into two equal parts, with O(n)
work required to combine them, resulting in an overall time complexity
of O(n log n).

---

Question 5:
Which of the following is an example of a problem that is proven to be
NP-complete?
©2025

, - A. Sorting a list of numbers
- B. The Traveling Salesman Problem (decision version)
- C. Computing the greatest common divisor (GCD)
- D. Finding the shortest path in a weighted graph

ANS: B. The Traveling Salesman Problem (decision version)
Rationale: The decision version of the Traveling Salesman Problem
(TSP) is NP-complete because it is both in NP and NP-hard. While the
optimization version is NP-hard, the decision version fits the NP-
complete classification.

---

Question 6:
Which algorithm employs dynamic programming to efficiently solve the
problem of finding the longest common subsequence between two
sequences?
- A. Quick sort
- B. Dijkstra’s algorithm
- C. Floyd-Warshall algorithm
- D. LCS (Longest Common Subsequence) algorithm

ANS: D. LCS (Longest Common Subsequence) algorithm
Rationale: The LCS algorithm uses dynamic programming to solve the
problem by breaking the problem into overlapping subproblems and
storing intermediate results, thereby reducing overall computation.

---

Question 7:
Regular languages are defined by regular expressions and can be
recognized by finite automata. Which of the following properties is true
for regular languages?
- A. They are closed under union and concatenation.
- B. They are not closed under complementation.
©2025
$15.49
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada

Conoce al vendedor

Seller avatar
Los indicadores de reputación están sujetos a la cantidad de artículos vendidos por una tarifa y las reseñas que ha recibido por esos documentos. Hay tres niveles: Bronce, Plata y Oro. Cuanto mayor reputación, más podrás confiar en la calidad del trabajo del vendedor.
MedGrad Walden University
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
29
Miembro desde
2 año
Número de seguidores
10
Documentos
3344
Última venta
1 semana hace

Hi there! I'm a former nursing student who loves to share my knowledge and help others succeed. On this account, you'll find my past study notes and papers for nursing and other programs that I've taken or reviewed. They are high-quality, well-organized and easy to understand. Whether you need a quick refresher, a detailed explanation or a sample essay, I've got you covered. Follow me and get access to the best resources for your studies. Trust me, you won't regret it!

Lee mas Leer menos
2.6

5 reseñas

5
0
4
0
3
3
2
2
1
0

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes