100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4.2 TrustPilot
logo-home
Notas de lectura

MATHEMATICS FOR SOPHOMORE YEAR

Puntuación
-
Vendido
-
Páginas
44
Subido en
22-05-2025
Escrito en
2022/2023

This Mathematics 10 Module is a must-have learning tool for Sophomore (10th Grade ) students, teachers, and tutors. It provides clear, well-organized, and K–12-aligned lessons perfect for classroom use, self-study, or online learning. With over 44 pages of comprehensive explanations, examples, and exercises, this module makes complex topics easier to understand and apply in real-life situations. Whether you're preparing for exams or strengthening math fundamentals, this downloadable PDF is an excellent resource for mastering the essential concepts of the first quarter. TOPICS COVERED: -Module 1: Generating Patterns and Sequences - Understanding patterns, sequences, and terms - Finite vs. infinite sequences - Special sequences (square, cube, triangular, Fibonacci) - Finding and creating general/nth terms Module 2: Arithmetic Sequences - Identifying arithmetic sequences - Finding the common difference - Determining unknown terms - Writing the general form Module 3: Arithmetic Means and nth Term -Inserting arithmetic means -Using the nth term formula -Solving real-life problems involving arithmetic sequences Module 4: Sum of Arithmetic Sequences -Deriving and using formulas to find the sum -Applying in practical scenarios -Using arithmetic extremes and means Module 5: Comparing Arithmetic and Geometric Sequences -Key differences between the two -Identifying common differences and ratios -Real-life applications Module 6: Geometric Sequences and Geometric Means -Finding the nth term of a geometric sequence -Inserting geometric means -Solving exponential growth problems Module 7: Geometric Series -Finite and infinite geometric series -Deriving and applying sum formulas -Real-life applications (e.g., savings, bouncing ball problems) Module 8: Dividing Polynomials -Long division of polynomials -Synthetic division -Applying the division algorithm

Mostrar más Leer menos
Institución
Sophomore / 10th Grade
Grado
Mathematics











Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Libro relacionado

Escuela, estudio y materia

Institución
Sophomore / 10th grade
Grado
Mathematics
Año escolar
2

Información del documento

Subido en
22 de mayo de 2025
Número de páginas
44
Escrito en
2022/2023
Tipo
Notas de lectura
Profesor(es)
Mrs. marie\\\'s beran
Contiene
Todas las clases

Temas

Vista previa del contenido

QUARTER 1 Module 1: Generating Patterns
●​ Pattern - it is formed if a set of shapes, numbers, or designs is repeated.
●​ Term - each number in the sequence
●​ Sequence - 1. a set of numbers arranged in a definite order. 2. An ordered
set of elements that can be put into one-to-one correspondence with the
set of positive integers.

Each member or element in the sequence is called a term ( a mathematical
expression that forms part of a fraction or proportion,is part of a series, or is
associated with another by a plus or minus sign.)

The term in a sequence can be written as 𝑎1, 𝑎2, 𝑎3, 𝑎4, … , 𝑎𝑛, …, which means 𝑎1 is
the first term, 𝑎2 is the second term, 𝑎3 is the third term, … , 𝑎𝑛 is the nth term, and
so on.

Sequence are classified as finite and infinite:
1.​ Finite sequence - having a countable number of elements. This means it
has an end or last term.
Examples: a) Days of the week (sunday, monday, tuesday, wednesday, … ,
saturday)
b) Alphabet ( a, b, c, d, e, f, g, … , x, y, z)
2.​ Infinite sequence - extending indefinitely or having unlimited spatial
extent. The number of terms of the sequence continues without stopping
or it has no end term. The ellipsis (...) implies that the numbers continue
forever.
Examples: a) counting numbers ( 1, 2, 3, 4, 5, ….)
b) the positive even numbers (2, 4, 6, 8, 210, … )

There are some special sequences that you should recognise.
The most important of these are:
2
●​ Square numbers: 1, 4, 9, 16, 25, 36, ... - the nth term is 𝑛
3
●​ Cube numbers: 1, 8, 27, 64, 125, ... - the nth term is 𝑛
●​ Triangular numbers: 1, 3, 6, 10, 15, ... (these numbers can be represented as
a triangle of dots). The term to term rule for the triangle numbers is to add
one more each time: 1 + 2 = 3, 3 + 3 = 6, 6 + 4 = 10 etc.
●​ Fibonacci sequence: 1, 1, 2, 3, 5, 8, 13, ... (in this sequence you start off with 1
and then to get each term you add the two terms that come before it)

,Sometimes a pattern in the sequence can be obtained and the sequence can be
2 3 4 5 6
written using a general term. In the previous example, x, 2𝑥 , 3𝑥 , 4𝑥 , 5𝑥 , 6𝑥 , … ,
each term has the same exponent and coefficient.

𝑛
We can write this sequence as 𝑎𝑛 =𝑛𝑥 where n=1, 2 ,3, 4, 5, 6, …, 𝑎𝑛 is called the
general or nth term.

A. Finding several terms of a sequence, given the general term:
Example 1.
Find the first four terms of the sequence 𝑎𝑛 = 2𝑛 − 1
Solution: To find the first term, let n= 1
𝑎𝑛 = 2𝑛 − 1 use the given general term

𝑎1 = 2(1) − 1 substitute n by 1

𝑎1 = 2 − 1 perform the operations

𝑎1 = 1 simplify


Find the second term, 𝑛 = 2
𝑎2 = 2(2) − 1
𝑎2 = 4 − 1
𝑎2 = 3


Find the third term, 𝑛 = 3
𝑎3 = 2(3) − 1
𝑎3 = 6 − 1
𝑎3 = 5


Find the fourth term, 𝑛 = 4
𝑎4 = 2(4) − 1
𝑎4 = 8 − 1
𝑎4 = 7


Therefore, the first four terms of the sequence are 1, 3, 5, 7

Example 2.
𝑛
(−1)
Find the 5th terms of the sequence 𝑏 = 𝑛+1
𝑛
Solution: To find the 5th term, let n= 5
5
(−1)
𝑏5 = 𝑛+1
use the given general term

, 5
(−1)
𝑏5 = 5+1
substitute n by 5
−1 1
𝑏5 = 6
=- 6
simplify (-1 raised to an odd number power is always negative)


B. Finding the general term, given several terms of the sequence:
Example 3.
Write the general term of the sequence 5, 12, 19, 26, 33,..

Solution: Notice that each term is 7 more than the previous term. We can
search the pattern using a tabular form.




In the pattern, the number of times that 7 is added to 5 is one less than the nth
term (n – 1). Thus,
𝑎𝑛 = 5 + 7(𝑛 − 1) equate 𝑎 𝑎𝑛𝑑 5 + 7(𝑛 − 1)
𝑛

𝑎𝑛 = 5 + 7𝑛 − 7) apply distributive property of multiplication

𝑎𝑛 = 7𝑛 − 2 combine similar terms


Therefore, the nth term of the sequence is 𝑎 = 7𝑛 − 2, where n= 1,2,3,4,5, …
𝑛


Example 4.
Write the general term of the sequence 2, 4, 8, 16, 32, . ..
Solution: Notice that each term is 2 times the previous term. We can search the
pattern using a tabular form.




𝑛
Therefore, the nth term of the sequence is 𝑎 = 2 , where n=1,2,3,4,5,...,
𝑛

, Example 5.
1 1 1 1
Find the general term of the sequence 1, 4 , 9 , 16 , 25 , ...
1 1 1 1 1 1
Solution: ,
1 4
, 9
, 16
, 25
, ... write 1 as 1
1 1 1 1 1 1
2 , 2 , 2 , 2 ' 2 , ..., 2 notice each denominator is an integer
1 2 3 4 5 𝑛
squared

1
Therefore, the nth term of the sequence is 𝑎 = 2 , where n=1,2,3,4,5,...,
𝑛 𝑛
$5.24
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada

Conoce al vendedor
Seller avatar
zyrellesagario

Conoce al vendedor

Seller avatar
zyrellesagario Perpetual Help College of Manila
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
1
Miembro desde
7 meses
Número de seguidores
0
Documentos
4
Última venta
7 meses hace

0.0

0 reseñas

5
0
4
0
3
0
2
0
1
0

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes