100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4.2 TrustPilot
logo-home
Resumen

Summary Econometrics 2 Essentials: Weeks 1–3 Exam Study Guide (Endogeneity, IV, GMM, MLE)

Puntuación
-
Vendido
-
Páginas
12
Subido en
21-05-2025
Escrito en
2024/2025

My document is a comprehensive, beginner-friendly study guide for Weeks 1–3 of an Econometrics 2 course designed for exam preparation. It covers key econometric concepts with detailed explanations, mathematical derivations, and intuitive insights, making it ideal for students with limited econometrics background. The document includes practice questions with answers, exam tips tailored for the May 2025 exam, and Stata outputs to bridge theory and application. It’s a versatile resource for undergraduate or graduate students in economics, finance, or social sciences, serving as a course supplement or standalone guide for mastering econometrics concepts like regression analysis, causal inference, and statistical modeling.

Mostrar más Leer menos
Institución
Grado









Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Escuela, estudio y materia

Institución
Estudio
Grado

Información del documento

Subido en
21 de mayo de 2025
Número de páginas
12
Escrito en
2024/2025
Tipo
Resumen

Temas

Vista previa del contenido

Econometrics 2: Weeks 1, 2, and 3 Review –
Endogeneity, IV, GMM, and MLE

Fei Deng

May 21, 2025

Abstract

This document provides a comprehensive review of Weeks 1, 2, and 3 from
my Econometrics 2 course, focusing on endogeneity, instrumental variables (IV),
Generalized Method of Moments (GMM), and Maximum Likelihood Estimation
(MLE). It is designed for my preparation for an exam on May 26, 2025, assuming
limited prior econometrics knowledge. The review covers key concepts, examples,
mathematical derivations, practice questions, and exam preparation tips, presented
accessibly.


1 Introduction
This review summarizes Weeks 1, 2, and 3 of my Econometrics 2 course. Week 1 ad-
dresses endogeneity in the Classical Linear Regression Model (CLRM) and Instru-
mental Variables (IV) as a solution. Week 2 introduces the Generalized Method of
Moments (GMM), extending IV to handle complex models. Week 3 covers Maximum
Likelihood Estimation (MLE) and likelihood-based testing, focusing on binary choice
models. The material builds on Econometrics 1, and this summary is crafted to aid my
exam preparation with intuitive explanations.


2 Week 1: Endogeneity and Instrumental Variables
2.1 Classical Linear Regression Model (CLRM)
The CLRM assumes a linear relationship:

yi = x′i β + εi , (1)

where:
• yi : Dependent (endogenous) variable (e.g., earnings).
• xi : Explanatory (exogenous) variables (e.g., years of schooling).
• β: Coefficients to estimate.
• εi : Error term (unobserved factors).


1

, Exogeneity assumption: The error term is uncorrelated with explanatory variables:

E[εi |xi ] = 0 =⇒ Cov(xi , εi ) = 0. (2)

If exogeneity holds, Ordinary Least Squares (OLS) provides unbiased and consistent
estimates of β. If not, endogeneity causes problems.

2.2 Endogeneity
Endogeneity occurs when an explanatory variable xi is correlated with the error term:
Cov(xi , εi ) ̸= 0. This violates the exogeneity assumption, making OLS biased and incon-
sistent.
Example 1 (Earnings and Schooling). Consider the model:

log(earnings) = β1 + β2 s + ε, (3)

where s is years of schooling. If individuals choose schooling based on unmeasured ability,
which also affects earnings, ability is in ε, causing Cov(s, ε) ̸= 0.

2.3 Causes of Endogeneity
There are five main causes of endogeneity:
1. Omitted Variables: Missing variables correlated with both xi and yi .
• Example: Ability affects schooling and earnings but is omitted.
• Math: True model is yi = x′i β + wi′ γ + εi , but estimated as yi = x′i β + ui , where
ui = wi′ γ + εi . If Cov(xi , wi ) ̸= 0, then Cov(xi , ui ) ̸= 0.
2. Measurement Error: Errors in measuring xi or yi .
3. Example: Misreported schooling introduces error, correlating with ε.
4. Simultaneity: yi and xi affect each other.
5. Example: Schooling affects earnings, but expected earnings influence schooling.
6. Math: yi = βxi + εi , xi = αyi + zi .
7. Sample Selection: Non-random sample biases results.
8. Example: Studying income only for employed individuals.
9. Misspecified Dynamics: Ignoring lagged effects in time-series data.
10. Example: Autoregressive model yt = γyt−1 + εt with serial correlation.

2.4 Consequences of Endogeneity
Endogeneity leads to:
• Bias: OLS estimates are biased:

E[β̂OLS |X] = β + (X ′ X)−1 X ′ E[ε|X] ̸= β. (4)


2
$10.20
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada

Conoce al vendedor
Seller avatar
feideng

Conoce al vendedor

Seller avatar
feideng Universiteit van Amsterdam
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
1
Miembro desde
4 año
Número de seguidores
0
Documentos
3
Última venta
1 año hace

0.0

0 reseñas

5
0
4
0
3
0
2
0
1
0

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes