100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4,6 TrustPilot
logo-home
Examen

Solution Manual for Linear Algebra and Optimization for Machine Learning 1st Edition by Charu Aggarwal, All 11 Chapters Covered, Verified Latest Edition

Puntuación
-
Vendido
-
Páginas
204
Grado
A+
Subido en
15-05-2025
Escrito en
2024/2025

Solution Manual for Linear Algebra and Optimization for Machine Learning 1st Edition by Charu Aggarwal, All 11 Chapters Covered, Verified Latest Edition Solution Manual for Linear Algebra and Optimization for Machine Learning 1st Edition by Charu Aggarwal, All 11 Chapters Covered, Verified Latest Edition Test bank and solution manual pdf free download Test bank and solution manual pdf Test bank and solution manual pdf download Test bank and solution manual free download Test Bank solutions Test Bank Nursing Test Bank PDF Test bank questions and answers

Mostrar más Leer menos
Institución
Linear Algebra & Optimization For Machine Learning
Grado
Linear Algebra & Optimization for Machine Learning











Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Libro relacionado

Escuela, estudio y materia

Institución
Linear Algebra & Optimization for Machine Learning
Grado
Linear Algebra & Optimization for Machine Learning

Información del documento

Subido en
15 de mayo de 2025
Número de páginas
204
Escrito en
2024/2025
Tipo
Examen
Contiene
Preguntas y respuestas

Temas

Vista previa del contenido

SOLUTION MANUAL
Linear Algebra and Optimization for Machine
Learning
1st Edition by Charu Aggarwal. Chapters 1 – 11




vii

,Contents


1 Linear Algebra and Optimization: An Introduction
U J M U J M U J M U J M U J M 1


2 Linear Transformations and Linear Systems
U J M U J M U J M U J M 17


3 Diagonalizable Matrices and Eigenvectors U J M U J M U J M 35


4 Optimization Basics: A Machine Learning View UJM UJM U JM UJM UJM 47


5 Optimization Challenges and Advanced Solutions U J M U J M U J M U J M 57


6 Lagrangian Relaxation and Duality U J M U J M U J M 63


7 Singular Value Decomposition U J M U J M 71


8 Matrix Factorization U J M 81


9 The Linear Algebra of Similarity
U J M U J M U J M U J M 89


10 The Linear Algebra of Graphs
U J M U J M U J M U J M 95


11 Optimization in Computational Graphs U J M U J M U J M 101




viii

,Chapter U J M 1

Linear Algebra and Optimization: An Introduction
UJ M UJ M UJ M UJ M UJ M




1. For any two vectors x and y, which are each of length a, show that
U J M U J M U J M U J M U J M U J M U J M U J M U J M U J M U J M U J M U J M U J M




U (i) x − y is orthogonal to x+y, and (ii) the dot product of x − 3y and x+3y
J M U J M UJM UJM U J M UJ M U JM UJ M UJM UJM U J M U JM U J M U JM UJM UJ M UJM UJM UJM U J M U JM UJM UJM U J M




is negative. U J M




(i) The first is simply· x −x y y using the distributive property of matrix m
UJM UJM UJM UJM
U
UJM
J M
U J M
U
U J M U J M UJM UJM UJM UJM UJM UJM UJM




ultiplication. The dot·product of a vector with itself is its squared length. Sin UJM UJM
J M



UJM UJM UJM UJM UJM UJM UJM UJM UJM UJM UJM




ce both vectors are of the same length, it follows that the result is 0. (ii) In the
UJM UJM UJM UJM UJM UJM UJM UJM UJM UJM UJM UJM UJM UJM UJM UJM UJM UJ




second case, one can use a similar argument to show that the result is a2 − 9a
M UJM UJM UJM UJM UJM UJM UJM UJM UJM UJM UJM UJM UJM UJM U JM UJM




2, which is negative.
UJM UJM UJM




2. Consider a situation in which you have three matrices A, B, and C, of sizes U J M U J M U J M U J M U J M U J M U J M U J M U J M U J M U J M U J M U J M U J M U J M




10×2, 2×10, and 10×10, respectively.
UJM UJM U JM UJM UJM UJM UJM UJM UJM UJM




(a) Suppose you had to compute the matrix product ABC. From an efficiency pe UJ M U JM UJ M UJ M UJM U JM U JM UJM UJ M UJ M UJ M UJM




r-
spective, would it computationally make more sense to compute (AB)C or woul
UJM UJM UJM UJM UJM UJM UJM UJM UJM UJM UJM UJM




d it make more sense to compute A(BC)?
UJM U JM U JM UJ M UJ M UJ M U JM




(b) If you had to compute the matrix product CAB, would it make more sense to
UJM UJM U JM UJ M UJM UJ M U JM UJM U JM UJ M UJ M UJ M U JM UJM U JM




compute (CA)B or C(AB)? U J M U J M U J M




The main point is to keep the size of the intermediate matrix as small as p
UJM UJM UJM UJM UJM UJM UJM UJM U JM UJM UJM UJM UJM UJM UJ M




ossible inorder to reduce both computational and space requirements. I U J M UJM UJM UJM UJM UJM UJM UJM UJM UJM




n the case of ABC, it makes sense to compute BC first. In the case of CAB it
UJM UJM UJM UJM UJM UJ M UJM UJM UJM UJM UJM UJM UJM UJM UJ M UJM UJ M UJM




makes sense to compute CA first. Thistype of associativity property is use UJM UJM UJM UJM UJM UJM UJM UJM UJM UJM UJM UJM




d frequently in machine learningin order to reduce computational require
UJM UJM UJM UJM UJM UJM UJM UJM UJM UJM




ments.
3. — A =
Show that if a matrix A satisfies U J M U J M U J M U J M U J M U J M U J M U J M




AT, then all the diagonal elements of t UJM U J M U J M U J M U J M U J M U J M U J M




he matrix are 0. UJM UJ M U JM




NotethatA+AT=0.However,thismatrix also contains twice the diagonal UJM UJM UJM UJM UJM UJM UJM UJM UJM UJM UJM UJM UJM UJM UJM




elements of A on its diagonal. Therefore, the diagonal elements of A mus UJM U JM UJM UJM UJM UJM UJM UJM UJM UJM UJM UJM




t be 0. UJM UJ M




4. Show that if we have a matrix satisfying A
—= UJ M UJ M U JM U JM U JM U JM U JM U JM UJM




1

, AT, then for any column vector x, we
UJM UJM UJM UJ M U JM U JM UJ M U JM UJ




have x Ax = 0.
M U J M
T
U JM U JM U JM




Note that the transpose of the scalar xTAx remains unchanged. Theref
U J M U J M U J M U J M U J M U J M U J M UJM U J M U J M U J M




ore, we have
U J M U J M




xTAx = (xTAx)T = xTATx = −xTAx. Therefore, we have 2xTAx = 0.
UJM U JM U JM UJM U J M U JM UJM UJM U JM U JM UJM U J M U J M U J M U J M UJM U JM U JM




2
$23.49
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada

Conoce al vendedor
Seller avatar
certifiedlecturer

Conoce al vendedor

Seller avatar
certifiedlecturer stuvia
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
4
Miembro desde
8 meses
Número de seguidores
1
Documentos
313
Última venta
2 meses hace
TEST BANKS HUBS A+

IF IN NEED FOR QUALITY TEST BANKS AND STUDY MATERIALS LOOK NO FURTHER !! OUR PRODUCTS ARE OF QUALITY SO BUY WITHOUT DOUBT . EXPECT TOP FIRST HAND CUSTOMER SERVICE BECAUSE WE ARE HERE FOR YOU .AT TEST BANKS HUBS !! YOUR HOME FOR QUALITY STUDY MATERIALS!!

0.0

0 reseñas

5
0
4
0
3
0
2
0
1
0

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes