100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4.2 TrustPilot
logo-home
Examen

Solution Manual for A First Course in Abstract Algebra – 8th Edition by John B. Fraleigh – Complete Solutions for All Chapters

Puntuación
-
Vendido
-
Páginas
57
Grado
A+
Subido en
08-05-2025
Escrito en
2024/2025

This document provides the complete solution manual for all chapters of the 8th edition of A First Course in Abstract Algebra by John B. Fraleigh. It includes fully worked-out solutions to exercises covering topics such as groups, rings, fields, homomorphisms, isomorphisms, cosets, and polynomial rings. An essential resource for students and instructors seeking clear explanations and step-by-step reasoning in abstract algebra.

Mostrar más Leer menos
Institución
First Course In Abstract Algebra A
Grado
First Course in Abstract Algebra A











Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Libro relacionado

Escuela, estudio y materia

Institución
First Course in Abstract Algebra A
Grado
First Course in Abstract Algebra A

Información del documento

Subido en
8 de mayo de 2025
Número de páginas
57
Escrito en
2024/2025
Tipo
Examen
Contiene
Preguntas y respuestas

Temas

Vista previa del contenido

SOLUTION MANUAL
First Course in Abstract
Algebra A 8th Edition by
John B. Fraleigh
All Chapters Full Complete

, CONTENTS
1. Sets and Relations 1

I. Groups and Subgroups

2. Introduction and Examples 4
3. Binary Operations 7
4. Isomorphic Binary Structures 9
5. Groups 13
6. Subgroups 17
7. Cyclic Groups 21
8. Generators and Cayley Digraphs 24

II. Permutations, Cosets, and Direct Products

9. Groups of Permutations 26
10. Orbits, Cycles, and the Alternating Groups
30
11. Cosets and the Theorem of Lagrange34
12. Direct Products and Finitely Generated Abelian Groups 37
13. Plane Isometries 42

III. Homomorphisms and Factor Groups

14. Homomorphisms 44
15. Factor Groups 49
16. Factor-Group Computations and Simple Groups 53
17. Group Action on a Set 58
18. Applications of G-Sets to Counting 61

IV. Rings and Fields

19. Rings and Fields 63
20. Integral Domains 68
21. Fermat’s and Euler’s Theorems 72
22. The Field of Quotients of an Integral Domain 74
23. Rings of Polynomials 76
24. Factorization of Polynomials over a Field 79
25. Noncommutative Examples 85
26. Ordered Rings and Fields 87

V. Ideals and Factor Rings

27. Homomorphisms and Factor Rings 89
28. Prime and Maximal Ideals 94Gröbner Bases for Ideals 99

, VI. Extension Fields

29. Introduction to Extension Fields 103
30. Vector Spaces 107
31. Algebraic Extensions 111
32. Geometric Constructions 115
33. Finite Fields 116

VII. Advanced Group Theory

34. Isomorphism Theorems 117
35. Series of Groups 119
36. Sylow Theorems 122
37. Applications of the Sylow Theory 124
38. Free Abelian Groups 128
39. Free Groups 130
40. Group Presentations 133

VIII. Groups in Topology

41. Simplicial Complexes and Homology Groups 136
42. Computations of Homology Groups 138
43. More Homology Computations and Applications 140
44. Homological Algebra 144

IX. Factorization
45. Unique Factorization Domains 148
46. Euclidean Domains 151
47. Gaussian Integers and Multiplicative Norms 154

X. Automorphisms and Galois Theory
48. Automorphisms of Fields 159
49. The Isomorphism Extension Theorem164
50. Splitting Fields 165
51. Separable Extensions 167
52. Totally Inseparable Extensions 171
53. Galois Theory 173
54. Illustrations of Galois Theory 176
55. Cyclotomic Extensions 183
56. Insolvability of the Quintic 185

APPENDIX Matrix Algebra 187


iv

, 0. z Sets zand zRelations 1

1. Sets z and z Relations
√ √ zzz
1. z 3, 3} 2. z The z set z is z empty.
z{ z−

3. z {1, z−1, z2, z−2, z3, z−3, z4, z−4, z5, z−5, z6, z−6, z10, z−10, z12, z−12, z15, z−15, z20, z−20, z30, z−30,
60, z−60}

4. z {−10, z−9, z−8, z−7, z−6, z−5, z−4, z−3, z−2, z−1, z0, z1, z2, z3, z4, z5, z6, z7, z8, z9, z10, z11}

5. It z is z not z a z well-defined z set. z(Some z may z argue z that z no z element z of z Z+ z is z large, z because
z every z element z exceeds zonly za zfinite znumber zof zother zelements zbut zis zexceeded zby zan zinfinite
znumber zof zother zelements. z Such zpeople zmight zclaim zthe zanswer zshould zbe z∅.)

6. ∅ 7. z The z set z is z ∅ z because z 33 z = z27 z and z 43 z = z64.

8. z It z is z not z a z well-defined z set. 9. z Q

10. z The z set z containing z all z numbers z that z are z (positive, z negative, z or z zero) z integer z multiples
z of z 1, z 1/2, z or z 1/3.

11. z z z{(a, z 1), z (a, z 2), z (a, z c), z (b, z1), z (b, z 2), z (b, z c), z (c, z 1), z (c, z 2), z (c, zc)}

12. a. z It zis za zfunction. z It zis z not zone-to-one zsince zthere zare ztwo zpairs zwith zsecond zmember z4.
z It zis znot zonto
B z because zthere zis zno zpair zwith zsecond zmember z2.
b. (Same z answer z as z Part(a).)
c. It zis z not za zfunction z because zthere zare z two z pairs zwith zfirst zmember z 1.
d. It z is z a z function. z zIt z is z one-to-one. z zIt z is z onto z B z because z every z element z of z B
z appears z as z second z member zof zsome zpair.
e. It zis za zfunction. zIt zis znot zone-to-one zbecause zthere zare ztwo zpairs zwith zsecond zmember
z6. z It zis znot z onto zB zbecause zthere zis zno zpair zwith zsecond zmember z2.
f. It zis z not z a zfunction z because zthere zare z two z pairs zwith zfirst zmember z 2.

13. Draw z the z line z through z P z and z x, z and z let z y z be z its z point z of z intersection z with z the z line
z segment z CD.

14. z z a. z φ z: z [0, z1] z→ z [0, z2] z where z φ(x) z= z2x b. z φ z: z [1, z3] z → z [5, z25] z where z φ(x) z= z5 z+ z10(x
z− z1)
c. z φ z : z [a, zb] z→ z [c, zd] z where z φ(x) z = z c z+ z d−c z(x z − z za)
b z−z a

15. Let zφ z: zS z → zR z be z defined z by z φ(x) z= 1
)2).
ztan(π(x z−

16. a. z ∅; z cardinality z 1 b. z ∅, z{a}; z cardinality z 2 c. z ∅, z{a}, z{b}, z{a, zb}; z cardinality z 4
d. z ∅, z{a}, z{b}, z{c}, z{a, zb}, z{a, zc}, z{b, zc}, z{a, zb, zc}; z cardinality z 8

17. Conjecture: z |P(A)| z= z2s z = z2|A|.
Proof z The z number z of z subsets z of z a z set z A z depends z only z on z the z cardinality z of z A,
z not z on z what z the z elements zof z A z actually z are. z Suppose z B z= z{1, z2, z3, z· z· z· z, zs z− z1}
$13.99
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada

Conoce al vendedor

Seller avatar
Los indicadores de reputación están sujetos a la cantidad de artículos vendidos por una tarifa y las reseñas que ha recibido por esos documentos. Hay tres niveles: Bronce, Plata y Oro. Cuanto mayor reputación, más podrás confiar en la calidad del trabajo del vendedor.
StuviaHero01 Oxford University
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
77
Miembro desde
9 meses
Número de seguidores
5
Documentos
2893
Última venta
2 días hace
A+ TestBank solution

Welcome to stuviahero01 , your go-to source for high-quality test banks and study materials designed to help you excel academically. We offer a comprehensive range of resources including test banks, study guides, solution manuals, and other study materials, all meticulously curated to ensure accuracy and effectiveness. Our affordable, instantly accessible materials are complemented by excellent customer support, making your learning experience seamless and efficient. Trust stuviahero01 to be your partner in academic success, providing the tools you need to achieve your educational goals.

Lee mas Leer menos
4.1

15 reseñas

5
9
4
2
3
2
2
0
1
2

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes