100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4.2 TrustPilot
logo-home
Notas de lectura

Olofsson Chapter 2 Study Guide

Puntuación
-
Vendido
-
Páginas
12
Subido en
07-05-2025
Escrito en
2019/2020

This study guide is a complete and well-organized resource for anyone taking Math 402 or reviewing key topics in probability and statistics. It covers a wide range of problems, each with clear, step-by-step solutions that explain the reasoning and math behind every answer. Topics include everything from roulette bets and dice games to exponential waiting times, Poisson processes, and size-biased sampling. The guide walks through each concept carefully—using formulas, examples, and detailed explanations—so you can really understand how and why things work. You’ll find material on expected values, variances, conditional probabilities, memoryless properties, and more. It also connects theory to practical situations, like server times, machine reliability, and how traits show up in populations. Whether you're studying for an exam, brushing up on core concepts, or just need help working through tough problems, this guide will help you learn faster and feel more confident. Plus, with its clear structure and thorough explanations, it's easy to follow and a great resource to refer back to.

Mostrar más Leer menos
Institución
Grado









Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Libro relacionado

Escuela, estudio y materia

Institución
Grado

Información del documento

Subido en
7 de mayo de 2025
Número de páginas
12
Escrito en
2019/2020
Tipo
Notas de lectura
Profesor(es)
Dr. thomas r. boucher
Contiene
Math 402

Temas

Vista previa del contenido

Math 402 Study Guide



Problem 1
In a “four number bet” in roulette, you win if any of the numbers 00, 0, 1, or 2 comes up.
1
(a) To maintain the typical house edge of an expected loss of − 19 , what should the payout
be if you wager one dollar?
1
Solution. To compute the fair payout that yields an expected loss of − 19 , consider the
following: There are 38 equally likely outcomes in American roulette. The probability of
4
winning the four-number bet is 38 , and the probability of losing is 34
38
.
Let x be the payout upon winning. The expected value E for a $1 wager is:
   
4 34 1
E= (x) + (−1) = −
38 38 19
Solving for x:
4 34 1
x− =−
38 38 19
4x − 34 = −2 (Multiply both sides by 38)
4x = 32
x=8

Thus, the fair payout is 8 .
(b) The actual payout for this bet is 8:1. What is the expected gain or loss from this wager?
Solution. With an 8:1 payout, the net gain is 8 dollars when you win, and the loss is 1
dollar when you lose.
   
4 34
E= (8) + (−1)
38 38
32 34
= −
38 38
2 1
= − = − ≈ −0.0526
38 19
1
Therefore, the expected loss is − or approximately $0.0526.
19

1

, Problem 2
In a dice game, you bet $2 on a number from 1 to 6. Three fair dice are rolled. If your
number appears on k ∈ {1, 2, 3} dice, you win 2k dollars (and keep your original wager). If
your number appears on none of the dice, you lose the wager. What is your expected net
profit or loss per round?
Solution. To compute the expected net profit, we define a random variable X representing
the net gain or loss for each round.
We first compute the probabilities P (k) for k = 0, 1, 2, 3 matches, using the binomial distri-
bution:    k  3−k
3 1 5
P (k) = , k = 0, 1, 2, 3.
k 6 6

Explicitly,
125 75 15 1
P (0) = , P (1) = , P (2) = , P (3) = .
216 216 216 216
A $2 stake yields a net profit of 2k dollars when k ≥ 1, and a loss of $2 when k = 0:
(
2k, k = 1, 2, 3,
X=
−2, k = 0.

We now calculate the expected value E[X]:
3
X
E[X] = 2kP (k) − 2P (0)
k=1
      
75 15 1 125
=2 +4 +6 −2
216 216 216 216
150 + 60 + 6 − 250 34 17
= =− =−
216 216 108

Thus, E[X] ≈ −0.1574 dollars.
On average, the player loses about $0.16 per round.


Problem 3
You are presented with two envelopes. One contains an unknown amount of money, and the
other contains 1.5 times that amount. You pick one envelope at random and find $120 inside.
Assuming equal probabilities, you reason that the other envelope might contain either $80
or $180.
(a) Compute the expected value if you switch.


2
$5.49
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada

Conoce al vendedor
Seller avatar
brandoncaudillo

Conoce al vendedor

Seller avatar
brandoncaudillo Texas A&M University - Commerce
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
0
Miembro desde
7 meses
Número de seguidores
0
Documentos
1
Última venta
-

0.0

0 reseñas

5
0
4
0
3
0
2
0
1
0

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes