100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4.2 TrustPilot
logo-home
Resumen

ECB3AMT Applied Micro-econometric Techniques Full Summary

Puntuación
-
Vendido
1
Páginas
66
Subido en
21-04-2025
Escrito en
2024/2025

This summary is written for the course ECB3AMT. This course is part of the dedicated minor Applied Data Science.

Institución
Grado











Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Escuela, estudio y materia

Institución
Estudio
Grado

Información del documento

Subido en
21 de abril de 2025
Número de páginas
66
Escrito en
2024/2025
Tipo
Resumen

Temas

Vista previa del contenido

Applied Micro-econometric Techniques

2024-2025

Utrecht University

, Applied Micro-econometric Techniques

Topic 0: Introduction
What is this course about?

- Cause-and-effect relationships

Questions we ask:

- What is the effect of price on sales
- How do marketing campaigns affect sales
- How do business strategies affect returns
- How do active labour market policies affect participants
- How does trade with China affect Dutch labour market?
- How does the introduction of robots affect firm productivity

The Gold Standard:

- This term refers to methods or approaches considered the most reliable and
accurate for establishing causal relationships
- A Randomized experiment is often regarded as the “Gold Standard”
- Some reasons why (added content)
o Random assignment
 To treatment and control groups
o Control of confounders
 Balances observed and unobserved characteristics
o Clear counterfactuals
 Control group represents what would have happened to the
treatment group in absence of treatment
- Yet, this is often infeasible in economics and business.

In this course we focus on experiments and quasi-experiments

- Natural experiments: assignment criterion occurs ‘naturally’ (without researcher
intervention)
- Quasi-experiments: criterion for assignment is selected by the researcher

Position in the program

- Regression




- ADAVE I and II looks at correlation and prediction
o Focuses on Y and Ŷ
- AMT looks at causal relationships between β and β^
o We disregard statistics like R2 in causal analysis
o We are more concerned whether our research design provides a credible
estimate of our population parameter


2

, Applied Micro-econometric Techniques
Topic 1: Regression
1. Correlation versus causality




Correlation does not imply causality

- Left panel shows a correlation between US spending on science and suicides.
Even though there is a correlation, it doesn’t necessarily imply a causal effect of
increased spending on suicides
- Right panel shows a less close correlation of Japanese cars sold in the US and
suicides by the crashing of motor vehicles.
- We call this spurious correlation

A lack of correlation does not imply lack of a causal effect




- Example: mandatory face masks in public transport in NL from June 2020
o No apparent change in COVID-19 cases, even an increase in the autumn of
2020
- Concluding question: Do face masks have an effect on less COVID cases?
o No: we do not know what would have happened had there been no rule to
wear masks
o There is no clear counterfactual




3

, Applied Micro-econometric Techniques
Vaccinations:

- No clear correlation between vaccine rates and infection numbers (fluctuates
positively and negatively)
- Can we conclude vaccinations have no effect?
o No: We do not know what would have happened if there had been no
vaccinations
o Further studies show vaccinations are effective. It’s just that other things
happen simultaneously.

Threats to the identification of causal effects

Reverse Causality

- Example: Middle Ages
- Europeans believed lice to improve health
- Reasoning: They observed that sick people do not have lice, whereas healthy
people do
o No lice  sick
- However, causality is reversed
- Lice are sensitive to body temperature and leave sick hosts
o No lice  fever

Selection bias and Omitted variables

- Example: health status of people who have (not) been hospitalized) in the past
12 months




- Do hospitals make people sick? E.g. due to germs etc? Not necessarily
- Alternative explanations
o Selection bias
o Omitted variable bias
- Example: a study comparing hospital visits and health status might miss that
sicker people are more likely to visit hospitals (selection bias)

Summary of Causal relationships




4
$11.46
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada

Conoce al vendedor
Seller avatar
ab3800

Conoce al vendedor

Seller avatar
ab3800 Universiteit Utrecht
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
2
Miembro desde
1 año
Número de seguidores
0
Documentos
5
Última venta
4 meses hace

0.0

0 reseñas

5
0
4
0
3
0
2
0
1
0

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes