100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4.2 TrustPilot
logo-home
Examen

BUS3060 Business Analytics Midterm Exam Review 2025 (Qns & Ans)

Puntuación
-
Vendido
-
Páginas
46
Grado
A+
Subido en
17-04-2025
Escrito en
2024/2025

BUS3060 Business Analytics Midterm Exam Review 2025 (Qns & Ans)BUS3060 Business Analytics Midterm Exam BUS3060 Business Analytics Midterm Exam Review 2025 (Qns & Ans)BUS3060 Business Analytics Midterm Exam Review 2025 (Qns & Ans)Review 2025 (Qns & Ans)

Mostrar más Leer menos
Institución
Grado











Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Escuela, estudio y materia

Institución
Grado

Información del documento

Subido en
17 de abril de 2025
Número de páginas
46
Escrito en
2024/2025
Tipo
Examen
Contiene
Preguntas y respuestas

Temas

Vista previa del contenido

BUS3060 Business Analytics

Midterm Exam Review (Qns & Ans)

2025



Question 1:
Case Study: A retail company develops a multiple regression
model to predict customer lifetime value (CLV) using historical
data. The initial model produces an R‑squared of 0.75. After
adding an additional predictor—which turns out to be irrelevant—
the R‑squared increases to 0.77, but the adjusted R‑squared falls
to 0.74.
Question: What does this outcome most likely indicate?
A. The new predictor substantially improves the model’s
predictive power.
B. The increase in R‑squared is spurious; the model may be
overfitting and the new predictor is not useful.
C. The model now perfectly predicts CLV.

©2025

,D. The adjusted R‑squared always increases when more
predictors are added.


Correct ANS: B. The increase in R‑squared is spurious; the
model may be overfitting and the new predictor is not useful.
Rationale: While R‑squared always increases (or remains the
same) with additional predictors, the adjusted R‑squared penalizes
for added variables. A decrease in adjusted R‑squared suggests
that the new predictor does not add explanatory power and may
even harm the model’s generalizability.


---


Question 2:
Case Study: A company uses a time‑series model to forecast
monthly revenue. The historical data exhibits an upward trend and
strong seasonal fluctuations. The analyst opts for a model that
incorporates both trend and seasonal components.
Question: Which forecasting method is most appropriate for
this scenario?
A. Simple Exponential Smoothing
B. Holt’s Linear Trend Method
C. Holt‑Winters Seasonal Method
D. Moving Average
©2025

, Correct ANS: C. Holt‑Winters Seasonal Method
Rationale: The Holt‑Winters method extends exponential
smoothing to capture both trend and seasonality, making it ideal
for time‑series data with regular seasonal patterns.


---


Question 3:
Case Study: A business uses a decision tree classifier to segment
potential customers based on likelihood to convert. However, the
tree model appears overly complex and is overfitting the training
data.
Question: Which technique is most effective for reducing
overfitting in this decision tree?
A. Increasing the maximum tree depth
B. Pruning the tree
C. Removing cross‑validation steps
D. Adding more independent variables


Correct ANS: B. Pruning the tree



©2025

, Rationale: Pruning is used to remove branches that offer little
power in predicting the target variable, thereby reducing model
complexity and helping to avoid overfitting.


---


Question 4:
Case Study: A marketing analyst uses K‑means clustering to
segment customers. To determine the optimal number of clusters,
the analyst evaluates the within‑cluster sum of squares (WCSS)
for different values of k.
Question: Which method is best for selecting the appropriate
number of clusters?
A. The Elbow Method
B. Linear Discriminant Analysis
C. Principal Component Analysis
D. Hierarchical Clustering


Correct ANS: A. The Elbow Method
Rationale: The Elbow Method involves plotting the WCSS
against the number of clusters and selecting the k at which the
marginal decrease sharply levels off (“the elbow”), indicating an
optimal trade‑off between fit and complexity.


©2025
$18.49
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada

Conoce al vendedor

Seller avatar
Los indicadores de reputación están sujetos a la cantidad de artículos vendidos por una tarifa y las reseñas que ha recibido por esos documentos. Hay tres niveles: Bronce, Plata y Oro. Cuanto mayor reputación, más podrás confiar en la calidad del trabajo del vendedor.
testbank11 Walden University
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
38
Miembro desde
2 año
Número de seguidores
7
Documentos
4468
Última venta
1 mes hace

Hi there! I'm a former nursing student who loves to share my knowledge and experience with others. I have a collection of study notes and papers that I've written for various courses and programs, and I'm selling them for a reasonable price. Whether you need help with anatomy, pharmacology, ethics, or anything else, I've got you covered. My notes are clear, concise, and fun to read. They will help you ace your exams and assignments, and maybe even make you laugh along the way. If you're interested, check out my profile and contact me. I'm looking forward to hearing from you!

Lee mas Leer menos
3.5

4 reseñas

5
2
4
0
3
1
2
0
1
1

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes