. . Exercise du = 4x3 + 2x2 + 4x2 + 2x + 2x + 1
dx = 4x3 + 6x2 + 4x + 1
v = (x3 + 2x2 + 1)4
y = 29 2 = 5x + 3 W = x3 + 2x2 + 1 V = 04
928 d &w 3x2 4x dr 40
dy
= = = + =
di di dw
dr = dr x dw
di dw dx
dy dy x
=
= 4(23 + 2x2 + 1)3(3x2 + 4x) -
= 928x5
=
4528 =
45(5x + 38/ ndv + vdu
&x di
= (x2 + x + 1)24(x3 + 2x2 + 1)3(3x2 + 4x)
+ (x3 +1)4 2x2 +
20 - z 4x3 2x +
1 (2x2 + 2x + 1)(2x + 1)
Y = = -
625 1 (x2 1)24(23 2x2 + 1)3(3x2 + 4x)
dy d
= = + x + +
=
+ (x3 + 2x2 + 1)4
=
62 (12x2 2) - = 1225(6x2- 1) - 2(x2 + x + 1)(2x + 1)
=
(x2 +x+ 1)2(x3 + 2x2 1)3(12x2 16x)
+ + +
1)+ 2(x2 + x + 1)(2x + 1)
dy =dy the
Xd (n3 + 2x2+
=
12 (4x3 -
2x + 1)(6x 2
- 1)
*
u = (x2 + x + 1)
=duxd
u = z2 - 2 = x2 + x + 1 -
=
2 dz = 2x + 1
dx
z(x2 + 1)(2x + 1) -
dr en =
x +
2x + 1)(2x + 1)
-
= (2x2 +
, 2(4 + x2)i v = (4 + x2)
u = x
w = 4+ x2 v =wi
=w
ar
du =
dw = 2x
dr
did
dr =drX
dr =
tw e
=
-
w x
(4 + x2) Ex
-
=
I R
(4 + x2
u dv + vdu
dx di
=
x R + (4 + x2)
(4 + x2
= x2 (4 + x2 xJ4+ 22
+
(4 + x2 1 J
= x2 + (4 + x2)
(4 + x2
= 4+ 2x2 = z(z + x2)
14 + x2 (4 + x2
, (x2 + 1)
z = x3 + 1
n =
25
du = 17 dz = 2x
d2 3 dx
dy = duxdz
on
de (2)
= 25
3
1)
2(x2
=
+
192
= 24
3(x2+ 1) - 3 3 + 12
↳ Expand
2)(j)
into x + 1
+
R
1
= x
+
+ 2
2
f'(x)
-
= 1 -
1x
=
1-1
x