100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4,6 TrustPilot
logo-home
Examen

Test Bank for Problem Solving Approach to Mathematics for Elementary School Teachers

Puntuación
-
Vendido
-
Páginas
60
Grado
A+
Subido en
07-04-2025
Escrito en
2024/2025

Test Bank for Problem Solving Approach to Mathematics for Elementary School Teachers Determine whether the following is a statement. If it is, then also classify the statement as true or false. 1) Why don't you come here? A) Not a statement B) False statement C) True statement Answer: A 2) This room is big. A) True statement B) Not a statement C) False statement Answer: B 3) 5 - 1 = 4 A) True statement B) Not a statement C) False statement Answer: A 4) 7x + y = 3 A) False statement B) True statement C) Not a statement Answer: C 5) Can you bring the book? A) True statement B) Not a statement C) False statement Answer: B 6) x + y = x - y, where y = 0 A) False statement B) True statement C) Not a statement Answer: B 7) 12 = 3y A) Not a statement B) False statement C) True statement Answer: A 8) 2.4 = 5.2 A) False statement B) Not a statement C) True statement Answer: A 9) The state of California is in North America. A) Not a statement B) False statement C) True statement Answer: C 10) Brazil is in Asia. A) True statement B) Not a statement C) False statement Answer: C Use a quantifier to make the following true or false, as indicated, where x is a natural number. 11) x + x = 6 (make true) A) There is no natural number x such that x + x = 6. B) For all natural numbers x, x + x = 6. C) There exists a natural number x such that x + x = 6. D) For every natural number x, x + x = 6.

Mostrar más Leer menos
Institución
A Problem Solving Approach To Mathematics
Grado
A Problem Solving Approach to Mathematics

Vista previa del contenido

TEST BANK

,MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Determine whether the following is a statement. If it is, then also classify the statement as true or false.
1) Why don't you come here?
A) Not a statement B) False statement C) True statement
Answer: A

2) This room is big.
A) True statement B) Not a statement C) False statement
Answer: B

3) 5 - 1 = 4
A) True statement B) Not a statement C) False statement
Answer: A

4) 7x + y = 3
A) False statement B) True statement C) Not a statement
Answer: C

5) Can you bring the book?
A) True statement B) Not a statement C) False statement
Answer: B

6) x + y = x - y, where y = 0
A) False statement B) True statement C) Not a statement
Answer: B

7) 12 = 3y
A) Not a statement B) False statement C) True statement
Answer: A

8) 2.4 = 5.2
A) False statement B) Not a statement C) True statement
Answer: A

9) The state of California is in North America.
A) Not a statement B) False statement C) True statement
Answer: C

10) Brazil is in Asia.
A) True statement B) Not a statement C) False statement
Answer: C

Use a quantifier to make the following true or false, as indicated, where x is a natural number.
11) x + x = 6 (make true)
A) There is no natural number x such that x + x = 6.
B) For all natural numbers x, x + x = 6.
C) There exists a natural number x such that x + x = 6.
D) For every natural number x, x + x = 6.
Answer: C

, 12) x3 = 8 (make true)
A) No natural number x exists such that x3 = 8.
B) Every natural number x satisfies x3 = 8.
C) There exists a natural number x such that x3 = 8.
D) Three natural numbers x exist such that x3 = 8.
Answer: C

13) 2x + 1 = 5 - x (make true)
A) No natural number x exists such that 2x + 1 = 5 - x.
B) There exists a natural number x such that 2x + 1 = 5 - x.
C) Only two natural numbers x exist such that 2x + 1 = 5 - x.
D) For every natural number x, 2x + 1 = 5 - x.
Answer: B

14) 12x = 5x + 7x (make false)
A) For every natural number x, 12x = 5x + 7x.
B) There is no natural number x such that 12x = 5x + 7x.
C) More than one natural number x exists such that 12x = 5x + 7x.
D) There exists a natural number x such that 12x = 5x + 7x.
Answer: B

15) x - 13 = 13 - x (make false)
A) For x = 13, x - 13 = 13 - x.
B) There exists a natural number x such that x - 13 = 13 - x.
C) At least one natural number x exists such that x - 13 = 13 - x.
D) There is no natural number x such that x - 13 = 13 - x.
Answer: D

16) 4x = 7x (make false)
A) There is no natural number x such that 4x = 7x.
B) For every natural number x, 4x = 7x.
C) No natural number x satisfies 4x = 7x.
Answer: B

Write the statement indicated.
17) Write the negation of the following:
The test is difficult.
A) The test is not difficult. B) The test is not very easy.
C) The test is very difficult. D) The test is not easy.
Answer: A

18) Write the negation of the following:
8 + 2 = 10
A) 8 + 2 = 12 B) 8 + 2 = 2 + 8
C) The sum of 8 and 2 is ten. D) 8 + 2 ≠ 10
Answer: D

,SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

Provide fan fappropriate fresponse.
19) Negate fthe ffollowing: fThe fstore fis fsometimes fopen fon
fSunday. fAnswer: f The fstore fis fnever fopen f on fSunday.

MULTIPLE fCHOICE. f Choose fthe fone falternative fthat fbest fcompletes fthe fstatement for fanswers fthe

fquestion. fConstruct fa ftruth ftable ffor fthe fstatement.
20) ~p f∧ f~s
A) p s (~p f ∧ f ~s) B) f p f f s f (~p f∧ f ~s) C) fp s (~p f∧ f ~s) D) f p f f s f (~p f∧ f ~s)
T T T T T F T T F T T F
T F F T F F T F F T F T
F T F F T F F T F F T T
F F T F F F F F T F F T
Answer: f C

21) s f∨ f~(r f∧ f p)
A) s r p s ∨ ~(r ∧ p) B) s r p s ∨ ~(r ∧ p)
T T T T T T T T
T T F T T T F T
T F T T T F T T
T F F T T F F T
F T T F F T T F
F T F T F T F T
F F T T F F T T
F F F F F F F T
Answer: B

22) (p ∧ ~q) ∧ t
A) p q t (p ∧ ~q) ∧ B) p q t (p ∧ ~q) ∧ t
T T T F T T T F
T T F F T T F F
T F T F T F T T
T F F F T F F F
F T T F F T T F
F T F T F T F F
F F T T F F T F
F F F T F F F F
Answer: B

,23) ~((w ∧ q) ∨ s)
A) w q s ~((w ∧ q) ∨ s) B) w q s ~((w ∧ q) ∨ s)
T T T T T T T F
T T F F T T F F
T F T T T F T F
T F F F T F F T
F T T T F T T F
F T F F F T F T
F F T T F F T F
F F F F F F F T
Answer: B

24) w ∨ (w ∧ ~w)
A) w w ∨ (w ∧ ~w) B) w w ∨ (w ∧ ~w) C) w w ∨ (w ∧ ~w) D) w w ∨ (w ∧ ~w)
T T T F T T T F
F T F F F F F T
Answer: C

25) (t ∧ p) ∨ (~t ∧ ~p)
A) t p (t ∧ p) ∨ (~t ∧ ~p) B) t p (t ∧ p) ∨ (~t ∧ ~p)
T T F T T T
T F F T F F
F T T F T F
F F T F F T
C) t p (t p) ∨ (~t ∧ ~p)
∧ D) t p (t p) ∨ (~t ∧ ~p)


T T T T F F
T F T F T F
F T T
F F F
Answer: f B

26) ~(~(s f∨ f p))
A) fs p ~(~(s f∨ fp)) B) f s p ~(~(s f∨ fp)) C) fs p ~(~(s f∨ fp)) D) fs p ~(~(s f ∨
f p))
T T T T T T T F T T T F
T F T T F T F T F T F F
F T T F T F F T F
F F F F F F F F T
Answer: A

, 27) ~(s f∨ ft) f ∧ f ~(t f ∧ f s)
A) fs t ~(s f∨ ft) f ∧ f ~(t B) f s t ~(s f∨ ft) f ∧ f ~(t
f ∧ f s) f ∧ f s)
T T F T T F
T F F T F F
F T F F T T
F F T F F F
C) fs t ~(s f∨ ft) f ∧ f ~(t D) fs t ~(s f∨ ft) f ∧ f ~(t
f ∧ f s) f ∧ f s)
T T F T T F
T F F T F T
F T F F T T
F F F F F F

Answer: f A

28) (p f∧ f w) f ∧ f (~w f∨ ft)
A) fp w t (p f∧ f w) f ∧ f (~w B) f p w t (p f∧ f w) f ∧
f∨ f t) f (~w f ∨ ft)
T T T F T T T T
T T F T T T F F
T F T T T F T F
T F F T T F F F
F T T T F T T F
F T F F F T F F
F F T T F F T F
F F F T F F F F
Answer: B


Letting fr fstand ffor f"The ffood fis fgood," fp fstand ffor f"I feat ftoo fmuch," fand fq fstand ffor f"I'll fexercise," fwrite fthe
ffollowing fin fsymbolic fform.
29) If fI feat ftoo fmuch, fthen fI'll fexercise.
A) r f→ fp B) fp f∨ fq C) fq f→ fp D) fp f→
fq fAnswer: f D


30) If fI fexercise, fthen fI fwon't feat ftoo fmuch.
A) p f→ fq B) fq f→ f~p C) fr f∧ fp D) f~(p f→
fq) fAnswer: f B


31) If fthe ffood fis fgood, fthen fI feat ftoo fmuch.
A) r f→ fp B) fr f∧ fp C) fp f→ fq D) fp f→
fr fAnswer: f A


32) If fthe ffood fis fgood fand fif fI feat ftoo fmuch, fthen fI'll fexercise.
A) r f→ f(p f∧ fq) B) f(r f∧ fp) f→ fq C) fr f∧ f(p f→ fq) D) fp f→ f(r f∧
fq) fAnswer: f B


33) If fthe ffood fis fgood for fif fI feat ftoo fmuch, fI'll fexercise.
A) r f→ f(p f∨ fq) B) f(r f∧ fp) f→ fq C) fr f→ fp f→ fq D) f(r f∨ fp)
f→ fq fAnswer: f D

, 34) If fthe ffood fis fnot fgood, fI fwon't feat ftoo fmuch.
A) f~r f→ f~p B) fr f→ f~p C) f~(r f→ fp) D) f~p f→
f~r fAnswer: fA


35) I'll fexercise fif fI feat ftoo fmuch.
A) p f∨ fq B) fq f→ fp C) fp f→ fq D) fq f∧
fp fAnswer: f C


36) The ffood fis fgood fand fif fI feat ftoo fmuch, fthen fI'll fexercise.
A) r f∧ f(p f→ fq) B) f(r f∨ fp) f→ f q C) f(r f→ fp) f∨ fq D) f(r f∧ fp)
f→ fq fAnswer: f A


37) I'll fexercise fif fI fdon't feat ftoo fmuch.
A) f~(p f→ fq) B) f~p f∧ fq C) f~p f→ fq D) f~p f∨
fq fAnswer: f C


38) If fI fexercise, fthen fthe ffood fwon't fbe fgood fand fI fwon't feat ftoo fmuch.
A) f(q f∧ f~r) f→ f~p B) fq f→ f~(r f∧ fp) C) f~(r f∧ fp) f→ fq D) fq f→ f(~r f∧
f~p) fAnswer: f D


Restate fin fa flogically fequivalent fform.
39) It fis fnot ftrue fthat fboth fthis fbook fis finteresting fand fthe fbook fis fabout fstars.
A) Either fthis fbook fis fnot finteresting for fit fis fnot fabout fstars.
B) This fbook fis fboth finteresting fand fabout fstars.
C) Either fthis fbook fis finteresting for fit fis fabout fstars.
D) This fbook fcannot fbe fboth finteresting fand fabout
fstars. fAnswer: f A

40) If fa fnumber fis fdivisible fby f4, fthen fit fis fdivisible fby f2.
A) If fa fnumber fis fnot fdivisible fby f4, fthen fit fis fdivisible fby f2.
B) If fa fnumber fis fnot fdivisible fby f4, fthen fit fis fnot fdivisible fby f2.
C) If fa fnumber fis fdivisible fby f4, fthen fit fis fnot fdivisible fby f2.
D) If fa fnumber fis fnot fdivisible fby f2, fthen fit fis fnot
fdivisible fby f4. fAnswer: f D


41) If fit fis fclean, fthen fit fwas fwashed.
A) If fit fwas fnot fwashed, fthen fit fis fnot fclean. B) f If fit fis fclean, fthen fit fwas fnot fwashed.
C) fIf fit fis fclean, fthen fit fwas fwashed. D) fIf fit fis fnot fclean, fthen fit fwas fnot
fwashed. fAnswer: f A

42) It fis fnot ftrue fthat ftoday fI fboth fwent fto fschool fand fread fa fbook.
A) Today, fI fread fa fbook fbut fdid fnot fgo fto fschool.
B) Today, fI feither fdid fnot fgo fto fschool for fI fdid fnot fread fa fbook.
C) Today, fI fwent fto fschool fand fread fa fbook.
D) Today, fI fdid fnot fread fa fbook fand fdid fnot fgo
fto fschool. fAnswer: f B

Escuela, estudio y materia

Institución
A Problem Solving Approach to Mathematics
Grado
A Problem Solving Approach to Mathematics

Información del documento

Subido en
7 de abril de 2025
Número de páginas
60
Escrito en
2024/2025
Tipo
Examen
Contiene
Preguntas y respuestas

Temas

$18.49
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada

Conoce al vendedor
Seller avatar
MasterTestbank01

Conoce al vendedor

Seller avatar
MasterTestbank01 Harvard University
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
1
Miembro desde
10 meses
Número de seguidores
1
Documentos
111
Última venta
10 meses hace
Test Bank Masters

Welcome to Test Bank Masters, your go-to source for high-quality test bank academic materials! We provide a wide range of test banks, practice exams, and study guides to help students and educators excel. Whether you are preparing for a big test, reinforcing your knowledge, or looking for reliable academic resources, we have got you covered. Comprehensive and up-to-date test banks Instant access to study materials Affordable prices for students

Lee mas Leer menos
0.0

0 reseñas

5
0
4
0
3
0
2
0
1
0

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes