100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4.2 TrustPilot
logo-home
Examen

Metric Spaces UPDATED ACTUAL Exam Questions and CORRECT Answers

Puntuación
-
Vendido
-
Páginas
20
Grado
A+
Subido en
07-04-2025
Escrito en
2024/2025

Metric Spaces UPDATED ACTUAL Exam Questions and CORRECT Answers metric space - CORRECT ANSWER symmetric and obey the triangle inequality - set with a distance function that must be positive, generalisation of the triangle inequality - CORRECT ANSWER prove with transitivity and induction l infinity space - CORRECT ANSWER - more than two basically, - the set of all bounded sequences of real numbers. {x={xn}|xn in R s.t. for all n in N there exists Mx s.t. |xn|<Mx}. With metric d(x,y)=sup|yn-xn| which exists because y and x are bounded

Mostrar más Leer menos
Institución
Metric Spaces
Grado
Metric Spaces










Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Escuela, estudio y materia

Institución
Metric Spaces
Grado
Metric Spaces

Información del documento

Subido en
7 de abril de 2025
Número de páginas
20
Escrito en
2024/2025
Tipo
Examen
Contiene
Preguntas y respuestas

Temas

Vista previa del contenido

Metric Spaces UPDATED ACTUAL Exam
Questions and CORRECT Answers
metric space - CORRECT ANSWER - set with a distance function that must be positive,
symmetric and obey the triangle inequality


generalisation of the triangle inequality - CORRECT ANSWER - more than two basically,
prove with transitivity and induction


l infinity space - CORRECT ANSWER - the set of all bounded sequences of real numbers.
{x={xn}|xn in R s.t. for all n in N there exists Mx s.t. |xn|<Mx}. With metric d(x,y)=sup|yn-xn|
which exists because y and x are bounded


C[a,b] as a metric space - CORRECT ANSWER - {f:[a,b]->R|f is cts} with metric
d(f,g)=max|f(x)-g(x)|


alternative C[a,b] metric - CORRECT ANSWER - integral of |f-g|



discrete metric spaces - CORRECT ANSWER - any set whatsoever with metric d(x,y)=0 if
x=y and 1 if x=/=y


lp spaces - CORRECT ANSWER - {x={xn}|E|xi|^p<+inf} R or C. with metric
d(x,y)=(E|xi-yi|^p)^1/p


young's inequality - CORRECT ANSWER - ab<=a^p/p+b^q/q where a,b>0 p>1 and q is
the conjugate exponent of p


conjugate exponent of p - CORRECT ANSWER - q such that 1/p+1/q=1

,proof of young's inequality - CORRECT ANSWER - take the graphs of different cases and
then use integration. (the graph of y=x^p-1, a on x, b on y)


holder's inequality - CORRECT ANSWER - E|xiyi|<=(E|xi|^p)^1/p(E|xi|^q)^1/q where x
in lp and y in lq


proof of holder's inequality - CORRECT ANSWER - define x_ and y_ like
xi_=xi/(E|xi|^p)^1/p. Then they're both in lp and lq still. In actual fact E|xi_|^p=1 and so use
young's inequality with a=|xi_| and b=|yi_| to get that E|xi_yi_|<=1 then sub in to finish


minkowski's inequality - CORRECT ANSWER -
(E|xi+yi|^p)^1/p<=(E|xi|^p)^1/p+(E|yi|^p)^1/p


proof of minkowski's inequality - CORRECT ANSWER -



open balls, closed balls, spheres - CORRECT ANSWER - B(x,r)={y in X: d(x,y)<r}.
B~(x,r)={y in X: d(x,y)<=r}. S(x,r)={y in X: d(x,y)=r}. BUS=B~


balls and spheres in function spaces - CORRECT ANSWER - key concept is ribbons.
Sphere must touch edge


open set - CORRECT ANSWER - all points are interior points



closed set - CORRECT ANSWER - complement is open (has boundary)



open balls are open sets proof - CORRECT ANSWER - use triangle inequality



closed balls are closed sets proof - CORRECT ANSWER - open balls are open sets and
contradiction by triangle inequality

, basic definition of a topology U - CORRECT ANSWER - like a power set but with the
extra condition that every set in U is defined to be an open set


axioms of a topology U of X - CORRECT ANSWER - empty set and X are in U, if Ei is in
U then the intersect from 1 to n of Ei is in U, if Ea is in U then the union over a of Ea is in U


topological space - CORRECT ANSWER - (X,U)



relationship between metrics and topology - CORRECT ANSWER - metrics give rise to a
topology but not necessarily the other way


hausdorff topological space - CORRECT ANSWER - if the topology specifies a metric



closed set, limit points - CORRECT ANSWER - a closed set contains all its limit points



metrical def of continuity - CORRECT ANSWER - for all e>0 there exists d(x,e)>0 st if y
in B(x,d(x,e)) then f(y) in B(f(x),e)


topological def if continuity - CORRECT ANSWER - if the preimage of an open set is an
open set


proof that metrical continuity implies topological continuity - CORRECT ANSWER -
open set, interior, continuity, containment, open set, top


proof that topological continuity implies metrical continuity - CORRECT ANSWER -
open set in codomain, open set in domain, interior point, got ya d


pseudometric spaces - CORRECT ANSWER - don't have to have positive definiteness, i.e.
d=0 doesn't have to mean x=y
$10.99
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada


Documento también disponible en un lote

Conoce al vendedor

Seller avatar
Los indicadores de reputación están sujetos a la cantidad de artículos vendidos por una tarifa y las reseñas que ha recibido por esos documentos. Hay tres niveles: Bronce, Plata y Oro. Cuanto mayor reputación, más podrás confiar en la calidad del trabajo del vendedor.
MGRADES Stanford University
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
1069
Miembro desde
1 año
Número de seguidores
102
Documentos
68976
Última venta
2 horas hace
MGRADES (Stanford Top Brains)

Welcome to MGRADES Exams, practices and Study materials Just think of me as the plug you will refer to your friends Me and my team will always make sure you get the best value from the exams markets. I offer the best study and exam materials for a wide range of courses and units. Make your study sessions more efficient and effective. Dive in and discover all you need to excel in your academic journey!

3.8

169 reseñas

5
73
4
30
3
44
2
8
1
14

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes