100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4.2 TrustPilot
logo-home
Examen

Solution Manual For A First Course in Differential Equations with Modeling Applications, 12th Edition Dennis G. Zill

Puntuación
-
Vendido
-
Páginas
1000
Grado
A+
Subido en
04-04-2025
Escrito en
2024/2025

Solution Manual For A First Course in Differential Equations with Modeling Applications, 12th Edition Dennis G. Zill

Institución
First Course In Differential Equations With Modeli
Grado
First Course in Differential Equations with Modeli











Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Libro relacionado

Escuela, estudio y materia

Institución
First Course in Differential Equations with Modeli
Grado
First Course in Differential Equations with Modeli

Información del documento

Subido en
4 de abril de 2025
Número de páginas
1000
Escrito en
2024/2025
Tipo
Examen
Contiene
Preguntas y respuestas

Temas

Vista previa del contenido

A First Course in Differential
Qi Qi Qi Qi Qi




Equations with Modeling App Qi Qi Qi




lications, 12th Edition by Den
Qi Qi Qi Qi




nis G. Zill Qi Qi




Complete Chapter Solutions Manual ar
Qi Qi Qi Qi




e included (Ch 1 to 9)
Qi Qi Qi Qi Qi




** Immediate Download
Qi Qi




** Swift Response
Qi Qi




** All Chapters included
Qi Qi Qi

,SolutionQiandQiAnswerQiGuide:QiZill,QiDIFFERENTIALQiEQUATIONSQiWithQiMODELINGQiAPPLICATIONSQi2024,Qi9780357760192;QiChapterQi
#1:




Solution and Answer Guide Qi Qi Qi




ZILL, DIFFERENTIAL EQUATIONS WITH MODELING APPLICATIONS 2024,
Qi Qi Qi Qi Qi Qi Qi


9780357760192; CHAPTER #1: INTRODUCTION TO DIFFERENTIAL EQUATIONS Qi Qi Qi Qi Qi Qi




TABLE OF CONTENTS QI QI




End of Section Solutions ..................................................................................................................................... 1
Qi Qi Qi



Exercises 1.1 ........................................................................................................................................................ 1
Qi



Exercises 1.2 ......................................................................................................................................................14
Qi



Exercises 1.3 ......................................................................................................................................................22
Qi



Chapter 1 in Review Solutions ...................................................................................................................... 30
Qi Qi Qi Qi




END OF SECTION SOLUTIONS
QI QI QI




EXERCISES 1.1 QI




1. Second order; linear Q i Q i


4
2. Third order; nonlinear because of (dy/dx)
Qi Qi Qi Qi Qi



3. Fourth order; linear Qi Qi



4. Second order; nonlinear because of cos(r + u)
Qi Qi Qi Qi Qi Qi Qi


5. Second order; nonlinear because of (dy/dx)2 or
Qi Qi Qi Qi Qi Qi 1 + (dy/dx)2
Qi Qi

2
6. Second order; nonlinear because of R Qi Qi Qi Qi Qi



7. Third order; linear Qi Qi


2
8. Second order; nonlinear because of ẋ Qi Qi Qi Qi Qi



9. First order; nonlinear because of sin (dy/dx)
Qi Qi Qi Qi Qi Qi



10. First order; linear Qi Qi


2
11. Writing the differential equation in the form x(dy/dx) + y = 1, we see that it is nonlin
Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi


ear in y because of y . However, writing it in the form (y —
2 2
Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi


1)(dx/dy) + x = 0, we see that it is linear in x.
Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi


u
12. Writing the differential equation in the form u(dv/du) + (1 + u)v = ue we see that it
Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi


is linear in v. However, writing it in the form (v + uv —
Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi


ueu)(du/dv) + u = 0, we see that it is nonlinear in u.
Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi



FromQiyQi=Qie− QiweQiobtainQiyjQi=Qi—Qi1Qe −x/2.QiThenQi2yjQi+QiyQi=Qi—e−x/2Qi+Qie−x/2Qi=Qi0.
x/2 i
13. 2

,SolutionQiandQiAnswerQiGuide:QiZill,QiDIFFERENTIALQiEQUATIONSQiWithQiMODELINGQiAPPLICATIONSQi2024,Qi9780357760192;QiChapterQi
#1:


66 —
14. From y = Qi Qi — e we obtain dy/dt = 24e
Qi Qi Qi Qi , so that
Qi Qi

5 5
QiQi
dy −20t 6 6 Qi

— −20t
5 Qi

e
3x
15. From y = e cos 2x we obtain yj = 3e3x cos 2x—2e3x sin 2x and yjj = 5e3x cos 2x—
Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi


12e sin 2x, so that yjj — 6yj + 13y = 0.
3x
Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi

j
16. From y = — Qi Qi Qi = —1 + sin x ln(sec x + tan x) and
Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi

cos x ln(sec x + tan x) we obtain y
Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi

jj
y Q i = tan x + cos x ln(sec x + tan x). Then y
Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi Q i + y = tan x.
Qi Qi Qi Qi



17. The domain of the function, found by solving x+2 ≥ 0, is [—2, ∞). From yj = 1+2(x+2)−
1/2
Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi


we have Qi



j −
—x)y = (y — x)[1 + (2(x + 2)
Q i Qi Qi Qi Qi Qi Qi Qi ]
−1/2
= y — x + 2(y —
Qi Qi Qi Qi Qi Qi




−1/2
= y — x + 2[x + 4(x + 2)1/2 —
Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi




= y — x + 8(x + 2)1/2
Qi Qi Qi Qi Qi Qi Qi
−1/2Q i =QiyQ i —QixQi+Qi8.


An interval of definition for the solution of the differential equation is (—
Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi


2, ∞) because yj is not defined at x = —2.
Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi



18. Since tan x is not defined for x = π/2 + nπ, n an integer, the domain of y = 5 tan 5x is
Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi Q i Qi Qi Qi Qi


{x Q i Q i 5x /= π/2 + nπ}Qi Qi Qi Qi



or {x Qi
Q i
x /= π/10 + nπ/5}. From jy = 25 s2ec 5x we have
Qi Qi Qi Qi Qi Qi Q i Qi Qi Q i Qi Qi




2 2 2
y .

An interval of definition for the solution of the differential equation is (—π/10, π/10). An-
Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi


other interval is (π/10, 3π/10), and so on.
Qi Qi Qi Qi Qi Qi Qi Qi



19. The domain of the function is {x 4 — x /= 0} or {x
Qi Qi Qi Qi Qi Qi Qi Qi Q i Qi Qi x /= —
Q i Q i


2 or x /= 2}. From y = 2x/(4 — x2)2 we have
Qi Qi Q i Q i Qi Qi Q i Qi Qi Qi Qi Qi


Q i Q i 1
yj = 2xQi Qi Q i = 2xy2.
Qi
2

4 — x2
Qi Qi



An interval of definition for the solution of the differential equation is (—
Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi


2, 2). Other inter- vals are (—∞, —2) and (2, ∞).
Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi


20. The function is y = 1/ 1 — sin x , whose domain is obtained from 1 — sin x /= 0 or sin x /= 1.
Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi


Thus, the domain is {x x /= π/2 + 2nπ}. From y = —
Qi Qi
2
(1 — sin x) (— cos x) we have Qi Qi Q i Qi Qi Qi Qi Qi Qi Qi Qi Q i Qi Qi Qi Qi Qi Qi Qi




2yj = (1 — sin x)−3/2 cos x = [(1 — sin x)−1/2]3 cos x = y3 cos x.
Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi




An interval of definition for the solution of the differential equation is (π/2, 5π/2). Anoth
Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi

, SolutionQiandQiAnswerQiGuide:QiZill,QiDIFFERENTIALQiEQUATIONSQiWithQiMODELINGQiAPPLICATIONSQi2024,Qi9780357760192;QiChapterQi
#1: erQioneQiisQi(5π/2,Qi9π/2),QiandQisoQion.
$17.99
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada

Conoce al vendedor

Seller avatar
Los indicadores de reputación están sujetos a la cantidad de artículos vendidos por una tarifa y las reseñas que ha recibido por esos documentos. Hay tres niveles: Bronce, Plata y Oro. Cuanto mayor reputación, más podrás confiar en la calidad del trabajo del vendedor.
Profkarl Oxford University
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
76
Miembro desde
1 año
Número de seguidores
7
Documentos
466
Última venta
1 semana hace

2.7

12 reseñas

5
3
4
0
3
4
2
0
1
5

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes