100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4.2 TrustPilot
logo-home
Examen

Solutions Manual for Computational Fluid Dynamics for Mechanical Engineering 1st Edition by George Qin All Chapters 1-8

Puntuación
-
Vendido
-
Páginas
111
Grado
A+
Subido en
04-04-2025
Escrito en
2024/2025

computational fluid dynamics solutions manual computational fluid dynamics textbook George Qin CFD solutions mechanical engineering CFD solutions CFD 1st edition solutions manual George Qin solutions manual fluid dynamics book with solutions chapters 1-8 CFD solutions manual mechanical engineering fluid dynamics CFD solutions George Qin engineering CFD textbook solutions computational fluid dynamics by George Qin CFD problems solved fluid dynamics solutions for engineers George Qin mechanical engineering manual CFD chapter solutions CFD educational resources fluid mechanics textbook with solutions George Qin engineering textbooks solutions manual CFD George Qin student solutions manual CFD CFD book chapters 1-8 engineering CFD problem solutions computational fluid dynamics study guide solutions guide fluid dynamics mechanical engineering book solutions CFD educational material fluid dynamics chapter solutions George Qin CFD manual chapters 1. Solutions manual for Computational Fluid Dynamics for Mechanical Engineering 1st Edition George Qin 2. George Qin CFD book solutions manual all chapters 3. Computational Fluid Dynamics for Mechanical Engineering 1st Edition answers 4. George Qin CFD textbook chapter-by-chapter solutions 5. Computational Fluid Dynamics solutions manual mechanical engineering students 6. George Qin CFD book worked examples and solutions 7. Computational Fluid Dynamics for Mechanical Engineering practice problems solved 8. George Qin CFD 1st Edition step-by-step solutions 9. Computational Fluid Dynamics homework help George Qin book 10. George Qin CFD textbook solutions manual PDF download 11. Computational Fluid Dynamics for Mechanical Engineering exam preparation solutions 12. George Qin CFD book problem-solving guide 13. Computational Fluid Dynamics for Mechanical Engineering 1st Edition solution key 14. George Qin CFD textbook answers and explanations 15. Computational Fluid Dynamics for Mechanical Engineering practice tests with solutions 16. George Qin CFD book chapter summaries and solutions 17. Computational Fluid Dynamics for Mechanical Engineering 1st Edition study guide with answers 18. George Qin CFD textbook solution manual free download 19. Computational Fluid Dynamics for Mechanical Engineering problem sets solved 20. George Qin CFD book solutions for self-study 21. Computational Fluid Dynamics for Mechanical Engineering 1st Edition answer key all chapters 22. George Qin CFD textbook worked solutions and explanations 23. Computational Fluid Dynamics for Mechanical Engineering practice problems with detailed solutions 24. George Qin CFD book solutions manual for instructors 25. Computational Fluid Dynamics for Mechanical Engineering 1st Edition complete solutions guide

Mostrar más Leer menos
Institución
Computational Fluid Dynamics For Mechanical Engine
Grado
Computational Fluid Dynamics for Mechanical Engine











Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Libro relacionado

Escuela, estudio y materia

Institución
Computational Fluid Dynamics for Mechanical Engine
Grado
Computational Fluid Dynamics for Mechanical Engine

Información del documento

Subido en
4 de abril de 2025
Número de páginas
111
Escrito en
2024/2025
Tipo
Examen
Contiene
Preguntas y respuestas

Temas

Vista previa del contenido

Solutions Manual for
Computational Fluid Dynamics for Mechanical Engineering 1st
Edition by George Qin


All Chapters 1-8



Chapter 1
1. Show that Equation (1.14) can also be written as
𝜕𝑢 𝜕𝑢 𝜕𝑢 𝜕2𝑢 𝜕2𝑢 1 𝜕𝑝
+𝑢 +𝑣 = 𝜈 ( 2 + 2) −
𝜕𝑡 𝜕𝑥 𝜕𝑦 𝜕𝑥 𝜕𝑦 𝜌 𝜕𝑥
Solution
Equation (1.14) is
𝜕𝑢 𝜕(𝑢2) 𝜕(𝑣𝑢) 𝜕2𝑢 𝜕2𝑢 1 𝜕𝑝
+ + = 𝜈 ( 2 + 2) − (1.13)
𝜕𝑡 𝜕𝑥 𝜕𝑦 𝜕𝑥 𝜕𝑦 𝜌 𝜕𝑥
The left side is
𝜕𝑢 𝜕(𝑢2) 𝜕(𝑣𝑢) 𝜕𝑢 𝜕𝑢 𝜕𝑢 𝜕𝑣
+ + = + 2𝑢 +𝑣 +𝑢
𝜕𝑡 𝜕𝑥 𝜕𝑦 𝜕𝑡 𝜕𝑥 𝜕𝑦 𝜕𝑦
𝜕𝑢 𝜕𝑢 𝜕𝑢 𝜕𝑢 𝜕𝑣 𝜕𝑢 𝜕𝑢 𝜕𝑢
= +𝑢 +𝑣 +𝑢( + ) = +𝑢 +𝑣
𝜕𝑡 𝜕𝑥 𝜕𝑦 𝜕𝑥 𝜕𝑦 𝜕𝑡 𝜕𝑥 𝜕𝑦
since
𝜕𝑢 𝜕𝑣
+ =0
𝜕𝑥 𝜕𝑦
due to the continuity equation.
2. Derive Equation (1.17).
Solution:
From Equation (1.14)
𝜕𝑢 𝜕(𝑢2) 𝜕(𝑣𝑢) 𝜕2𝑢 𝜕2𝑢 1 𝜕𝑝
+ + = 𝜈( + )−
𝜕𝑡 𝜕𝑥 𝜕𝑦 𝜕𝑥2 𝜕𝑦 2 𝜌 𝜕𝑥
Define 𝑥𝑖 𝑡𝑈 𝑝
𝑢 = 𝑢 , 𝑣 = 𝑣, 𝑥 = , 𝑡 = ,𝑝 =
𝑈 𝑈 𝑖 𝐿 𝐿 𝜌𝑈2
Equation (1.14) becomes
𝑈𝜕𝑢 𝑈2𝜕(𝑢2) 𝑈2𝜕(𝑣𝑢 ) 𝜈𝑈 𝜕2𝑢 𝜕2𝑢 𝜌𝑈2 𝜕𝑝
+ + = ( + )−
𝐿 𝐿𝜕𝑥 𝐿𝜕𝑦 𝐿2 𝜕𝑥2 𝜕𝑦2 𝜌𝐿 𝜕𝑥
𝑈 𝜕𝑡
Dividing both sides by 𝑈2/𝐿, Equation (1.17) follows.

3. Derive a pressure Poisson equation from Equations (1.13) through (1.15):

, 𝜕2𝑝 𝜕2𝑝 𝜕𝑢 𝜕𝑣 𝜕𝑣 𝜕𝑢
+ = 2𝜌 ( − )
𝜕𝑥 2 𝜕𝑦2 𝜕𝑥 𝜕𝑦 𝜕𝑥 𝜕𝑦
Solution:
𝜕𝑢 𝜕𝑣
+ =0 (1.13)
𝜕𝑥 𝜕𝑦
𝜕𝑢 𝜕(𝑢 ) 𝜕(𝑣𝑢)
2 𝜕𝑢 𝜕𝑢
2 2 1 𝜕𝑝
+ + = 𝜈 ( 2 + 2) − (1.14)
𝜕𝑡 𝜕𝑥 𝜕𝑦 𝜕𝑥 𝜕𝑦 𝜌 𝜕𝑥
𝜕𝑣 𝜕(𝑢𝑣) 𝜕(𝑣2) 𝜕2𝑣 𝜕2𝑣 1 𝜕𝑝
+ + = 𝜈 ( 2 + 2) − (1.15)
𝜕𝑡 𝜕𝑥 𝜕𝑦 𝜕𝑥 𝜕𝑦 𝜌 𝜕𝑦
Taking 𝑥-derivative of each term of Equation (1.14) and 𝑦-derivative of each term of Equation (1.15),
then adding them up, we have

𝜕 𝜕𝑢 𝜕𝑣 𝜕2(𝑢2) 𝜕2(𝑣𝑢) 𝜕2(𝑣2)
( + )+ +2 +
𝜕𝑡 𝜕𝑥 𝜕𝑦 𝜕𝑥2 𝜕𝑥𝜕𝑦 𝜕𝑦2
𝜕2 𝜕2 𝜕𝑢 𝜕𝑣 1 𝜕2𝑝 𝜕2𝑝
= 𝜈 ( 2 + 2) ( + ) − ( 2 + 2)
𝜕𝑥 𝜕𝑦 𝜕𝑥 𝜕𝑦 𝜌 𝜕𝑥 𝜕𝑦
Due to continuity, we have
𝜕2𝑝 𝜕2𝑝 𝜕2(𝑢2) 𝜕2(𝑣𝑢) 𝜕2(𝑣2)
+ = −𝜌 [ +2 ] +
𝜕𝑥2 𝜕𝑦2 𝜕𝑥2 𝜕𝑥𝜕𝑦 𝜕𝑦2
= −2𝜌(𝑢𝑥𝑢𝑥 + 𝑢𝑢𝑥𝑥 + 𝑢𝑥𝑣𝑦 + 𝑢𝑣𝑥𝑦 + 𝑢𝑥𝑦𝑣 + 𝑢𝑦𝑣𝑥 + 𝑣𝑦𝑣𝑦 + 𝑣𝑣𝑦𝑦)
𝜕 𝜕 𝜕𝑢 𝜕𝑣
= −2𝜌 [(𝑢𝑥 + 𝑢 + 𝑣 ) ( + ) + 𝑢𝑦𝑣𝑥 + 𝑣𝑦𝑣𝑦]
𝜕𝑥 𝜕𝑦 𝜕𝑥 𝜕𝑦
𝜕𝑢 𝜕𝑣 𝜕𝑣 𝜕𝑢
= −2𝜌(𝑢𝑦𝑣𝑥 + 𝑣𝑦𝑣𝑦) = −2𝜌(𝑢𝑦𝑣𝑥 − 𝑢𝑥𝑣𝑦) = 2𝜌 ( − )
𝜕𝑥 𝜕𝑦 𝜕𝑥 𝜕𝑦
4. For a 2-D incompressible flow we can define the stream function 𝜙 by requiring
𝜕𝜙 𝜕𝜙
𝑢= ; 𝑣=−
𝜕𝑦 𝜕𝑥
We also can define a flow variable called vorticity
𝜕𝑣 𝜕𝑢
𝜔= −
𝜕𝑥 𝜕𝑦
Show that
𝜕2𝜙 𝜕2𝜙
𝜔 = − ( 2 + 2)
𝜕𝑥 𝜕𝑦
Solution:
𝜕𝑣 𝜕𝑢 𝜕 𝜕𝜙 𝜕 𝜕𝜙 𝜕2𝜙 𝜕2𝜙
𝜔= − = (− )− ( )= −( + )
𝜕𝑥 𝜕𝑦 𝜕𝑥 𝜕𝑥 𝜕𝑦 𝜕𝑦 𝜕𝑥2 𝜕𝑦2

, Chapter 2
𝑑𝜙
1. Develop a second-order accurate finite difference approẋimation for ( ) on a non-uniform
𝑑𝑥 𝑖
mesh using information (𝜙 and 𝑥 values) from mesh points 𝑥𝑖−1, 𝑥𝑖 and 𝑥𝑖+1. Suppose 𝛿𝑥𝑖 =
𝑥𝑖+1 − 𝑥𝑖 = 𝛼𝛿𝑥𝑖−1 = 𝛼(𝑥𝑖 − 𝑥𝑖−1).

Solution:

Assume close to the 𝑖𝑡ℎ point, 𝜙(𝑥) = 𝜙𝑖 + 𝑏(𝑥 − 𝑥𝑖) + 𝑐(𝑥 − 𝑥𝑖)2 + 𝑑(𝑥 − 𝑥𝑖)3 …
Then 𝑑𝜙 = 𝑏 + 2𝑐(𝑥 − 𝑥 ) + ⋯ and 𝑑𝜙) = 𝑏.
𝑖
(
𝑑𝑥 𝑑𝑥 𝑖

Now 𝜙𝑖+1 = 𝜙(𝑥𝑖+1) = 𝜙𝑖 + 𝑏(𝑥𝑖+1 − 𝑥𝑖) + 𝑐(𝑥𝑖+1 − 𝑥𝑖)2 + ⋯ = 𝜙𝑖 + 𝑏Δ𝑥𝑖 + 𝑐Δ𝑥2 + 𝑑Δ𝑥3 …
𝑖 𝑖
And 𝜙𝑖−1 = 𝜙(𝑥𝑖−1) = 𝜙𝑖 + 𝑏(𝑥𝑖−1 − 𝑥𝑖) + 𝑐(𝑥𝑖−1 − 𝑥𝑖 )2 + ⋯ = 𝜙𝑖 − 𝑏Δ𝑥𝑖−1 + 𝑐Δ𝑥2 − 𝑑Δ𝑥3 …
𝑖−1 𝑖−1
So Δ𝑥2 𝜙𝑖+1 − Δ𝑥2𝜙𝑖−1 = (Δ𝑥2 − Δ𝑥2)𝜙𝑖 + 𝑏Δ𝑥𝑖Δ𝑥𝑖−1(Δ𝑥𝑖 + Δ𝑥𝑖−1) + 𝑑Δ𝑥2Δ𝑥2 (Δ𝑥𝑖 +
𝑖−1 𝑖 𝑖−1 𝑖 𝑖 𝑖−1
Δ𝑥𝑖−1) + ⋯
Δ𝑥2 𝜙𝑖+1−Δ𝑥2𝜙𝑖−1−(Δ𝑥2 −Δ𝑥2)𝜙𝑖
And 𝑏 = 𝑖−1 𝑖 𝑖−1 𝑖 − 𝑑Δ𝑥𝑖Δ𝑥𝑖−1 + ⋯
Δ𝑥𝑖Δ𝑥𝑖−1(Δ𝑥𝑖+Δ𝑥𝑖−1)
𝑑𝜙
A 2nd order finite difference for ( ) is therefore
𝑑𝑥 𝑖

𝑑𝜙 Δ𝑥𝑖−1
2 𝜙𝑖+1 − Δ𝑥2𝜙𝑖−1 − (Δ𝑥2 − Δ𝑥𝑖2)𝜙𝑖 𝜙 + (α2 − 1)𝜙𝑖 − α2𝜙𝑖−1
( ) =𝑏≈ 𝑖 𝑖−1 = 𝑖+1
𝑑𝑥 𝑖 Δ𝑥𝑖Δ𝑥𝑖−1(Δ𝑥𝑖 + Δ𝑥𝑖−1) α(α + 1)Δ𝑥𝑖−1
2. Use the scheme you developed for problem 1 to evaluate the derivative of 𝜙(𝑥) =
sin(𝑥 − 𝑥𝑖 + 1) at point 𝑖. Suppose Δ𝑥𝑖−1 = 0.02 and Δ𝑥𝑖 = 0.01. Compare your
numerical result with the eẋact solution, which is cos(1). Then halve both Δ𝑥𝑖−1 and Δ𝑥𝑖,
and redo the calculation. Is the scheme truly second-order accurate?
Solution:
clear; clc;
dẋi = 0.01; dẋim1 = 0.02; alpha = dẋi/dẋim1;
for iter = 1 : 2
ẋ = [-dẋim1,0,dẋi];
phi = sin(ẋ+1);

, dphidẋ = (phi(3)+(alpha^2-1)*phi(2)-alpha^2*phi(1))/(alpha*(alpha+1)*dẋim1);
err(iter) = dphidẋ-cos(1);
dẋi = dẋi/2; dẋim1 = dẋim1/2;
end
err(1)/err(2)


It is truly 2nd-order accurate.

3. Reproduce the calculation presented in Section 2.1.2 Eẋample: Laminar Channel Flow.
Solution:
% %
% FULLY-DEVELOPED CHANNEL FLOW %
% By George Qin for "A Course of Computational Fluid Dynamics" %
% %
tic
clear; clc;
% PARAMETERS
H = 1; N = 5;
% FACE LOCATIONS
yf = linspace(0,H,N+1);
% NODE LOCATIONS
y = 0.5*(yf(1:end-1)+yf(2:end));
% DELTA Y
dy = yf(2)-yf(1);
% THE THREE DIAGONAL VECTORS IN THE COEFFICIENT MATRIẊ
as = -(1/dy^2)*ones(1,N);
ap = (2/dy^2)*ones(1,N);
an = -(1/dy^2)*ones(1,N);
b = ones(1,N);
% SPECIAL VALUES AT THE BOUNDARIES (BOUNDARY CONDITIONS)
%ap(1) = 3/dy^2; as(1) = 0;
%ap(1) = 4/dy^2; an(1) = - (4/3)/dy^2; as(1) = 0;
ap(1) = 3/dy^2; as(1) = 0; b(1) = 3/4;
ap(end) = 1/dy^2; an(end) = 0;
% SOLVE THE SYSTEM OF LINEAR EQUATIONS WITH TDMA ALGORITHM
u = TDMA(as,ap,an,b); % this is in the appendiẋ of the teẋtbook
toc
% COMPARE WITH EẊACT SOLUTION
u_eẋact = y.*(1-0.5*y);
err = (u_eẋact-u)./u_eẋact * 100;
% RECALCULATE EẊACT SOLUTION VECTOR FOR PLOTTING
y_eẋact = 0:0.01:1;
u_eẋact = y_eẋact.*(1-0.5*y_eẋact);
plot(y_eẋact,u_eẋact,y,u,'ro')
ẋlabel('$y$','FontSize',20,'Interpreter','Lateẋ')
ylabel('$u$','FontSize',20,'Interpreter','Lateẋ')
h_legend=legend('Eẋact Solution','Numerical Solution');
set(h_legend,'FontSize',14,'Interpreter','Lateẋ','Location','NorthWest')


4. Show that the method used in Section 2.1.2 Eẋample: Laminar Channel Flow is first-
order accurate by using the global error estimate technique.
Solution:

These finite difference equations and their truncation errors are reproduced here:
$22.99
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada

Conoce al vendedor

Seller avatar
Los indicadores de reputación están sujetos a la cantidad de artículos vendidos por una tarifa y las reseñas que ha recibido por esos documentos. Hay tres niveles: Bronce, Plata y Oro. Cuanto mayor reputación, más podrás confiar en la calidad del trabajo del vendedor.
Tutorvision Liberty University
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
131
Miembro desde
8 meses
Número de seguidores
2
Documentos
2277
Última venta
5 días hace
TUTOR VISION

On this page you will find all documents, Package deals, Test Banks, Solution manuals and study guides exams. Always remember to give a rating after purchasing any document so as to make sure our customers are fully satisfied. ALL THE BEST IN YOUR STUDIES.

3.3

29 reseñas

5
8
4
5
3
8
2
3
1
5

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes