100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4.2 TrustPilot
logo-home
Examen

Solution Manual For A First Course in Differential Equations with Modeling Applications, 12th Edition Dennis G. Zill/ All chapters 1-9 fully covered

Puntuación
-
Vendido
-
Páginas
1043
Grado
A+
Subido en
03-04-2025
Escrito en
2024/2025

Solution Manual For A First Course in Differential Equations with Modeling Applications, 12th Edition Dennis G. Zill/ All chapters 1-9 fully covered

Institución
SM+TB
Grado
SM+TB











Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Libro relacionado

Escuela, estudio y materia

Institución
SM+TB
Grado
SM+TB

Información del documento

Subido en
3 de abril de 2025
Número de páginas
1043
Escrito en
2024/2025
Tipo
Examen
Contiene
Preguntas y respuestas

Temas

Vista previa del contenido

A First Course in Differential
b1 b1 b1 b1 b1




Equations with Modeling Ap b1 b1 b1




plications, 12th Edition by De b1 b1 b1 b1




nnis G. Zill b1 b1




Complete Chapter Solutions Manual ar
b1 b1 b1 b1




e included (Ch 1 to 9)
b1 b1 b1 b1 b1




** Immediate Download
b1 b1




** Swift Response
b1 b1




** All Chapters included
b1 b1 b1

,Solutionb1andb1Answerb1Guide:b1Zill,b1DIFFERENTIALb1EQUATIONSb1Withb1MODELINGb1APPLICATIONSb12024,b19780357760192; b1Chapter
b1#1:




Solution and Answer Guide b1 b1 b1




ZILL, DIFFERENTIAL EQUATIONS WITH MODELING APPLICATIONS 2024,
b1 b1 b1 b1 b1 b1 b1


9780357760192; CHAPTER #1: INTRODUCTION TO DIFFERENTIAL EQUATIONS b1 b1 b1 b1 b1 b1




TABLE OF CONTENTS B1 B1




End of Section Solutions .................................................................................................................................... 1
b1 b1 b1



Exercises 1.1 ........................................................................................................................................................ 1
b1



Exercises 1.2 ......................................................................................................................................................14
b1



Exercises 1.3 ......................................................................................................................................................22
b1



Chapter 1 in Review Solutions ..................................................................................................................... 30
b1 b1 b1 b1




END OF SECTION SOLUTIONS
B1 B1 B1




EXERCISES 1.1 B 1




1. Second order; linear b 1 b 1


4
2. Third order; nonlinear because of (dy/dx)
b1 b1 b1 b1 b1



3. Fourth order; linear b1 b1



4. Second order; nonlinear because of cos(r + u)
b1 b1 b1 b1 b1 b1 b1


5. Second order; nonlinear because of (dy/dx)2 or 1 + (dy/dx)2
b1 b1 b1 b1 b1 b1 b1 b1

2
6. Second order; nonlinear because of R
b1 b1 b1 b1 b1



7. Third order; linear b1 b1


2
8. Second order; nonlinear because of ẋ
b1 b1 b1 b1 b1



9. First order; nonlinear because of sin (dy/dx)
b1 b1 b1 b1 b1 b1



10. First order; linear b1 b1


2
11. Writing the differential equation in the form x(dy/dx) + y = 1, we see that it is nonl
b1 b1 b1 b1 b1 b1 b1 b1 b1 b1 b1 b1 b1 b1 b1 b1 b1


inear in y because of y . However, writing it in the form (y —
2 2
b1 b1 b1 b1 b1 b1 b1 b1 b1 b1 b1 b1 b1


1)(dx/dy) + x = 0, we see that it is linear in x.
b1 b1 b1 b1 b1 b1 b1 b1 b1 b1 b1 b1 b1


u
12. Writing the differential equation in the form u(dv/du) + (1 + u)v = ue we see that
b1 b1 b1 b1 b1 b1 b1 b1 b1 b1 b1 b1 b1 b1 b1 b1


it is linear in v. However, writing it in the form (v + uv —
b1 b1 b1 b1 b1 b1 b1 b1 b1 b1 b1 b1 b1 b1 b1


ueu)(du/dv) + u = 0, we see that it is nonlinear in u.
b1 b1 b1 b1 b1 b1 b1 b1 b1 b1 b1 b1 b1



Fromb1yb1=b1e− b1web1obtainb1yjb1=b1—b11b1e− .b1Thenb12yjb1+b1yb1=b1—e− b1+b1e− b1=b10.
x/2 x/2 x/2 x/2
13. 2

,Solutionb1andb1Answerb1Guide:b1Zill,b1DIFFERENTIALb1EQUATIONSb1Withb1MODELINGb1APPLICATIONSb12024,b19780357760192; b1Chapter
b1#1:




6 6 —
14. From y = b1 b1 — e we obtain dy/dt = 24e , so that
b1 b1 b1 b1 b1 b1

5 5
b1b1
dy −20t 6 6 b1

— −20t
5 b1

e
3x
15. From y = e b1 b1cos 2x we obtain yj = 3e3x cos 2x—2e3x sin 2x and yjj = 5e3x cos 2x—
b1 b1 b1 b1 b1 b1 b1 b1 b1 b1 b1 b1 b1 b1 b1 b1 b1 b1


12e 3x
sin 2x, so that yjj — 6yj + 13y = 0.
b1 b1 b1 b1 b1 b1 b1 b1 b1 b1 b1

j
16. From y = — b1 b1 b1 = —1 + sin x ln(sec x + tan x) and
b1 b1 b1 b1 b1 b1 b1 b1 b1 b1

cos x ln(sec x + tan x) we obtain y
b1 b1 b1 b1 b1 b1 b1 b1 b1 b1

jj
y b 1 = tan x + cos x ln(sec x + tan x). Then y
b1 b1 b1 b1 b1 b1 b1 b1 b1 b1 b1 b1 b 1 + y = tan x.
b1 b1 b1 b1



17. The domain of the function, found by solving x+2 ≥ 0, is [—2, ∞). From yj = 1+2(x+2)−
1/2
b1 b1 b1 b1 b1 b1 b1 b1 b1 b1 b1 b1 b1 b1 b1 b1 b1


we have b1



j −
—x)y = (y — x)[1 + (2(x + 2) ]
b 1 b1 b1 b1 b1 b1 b1 b1




−1/2
= y — x + 2(y —
b1 b1 b1 b1 b1 b1




−1/2
= y — x + 2[x + 4(x + 2)1/2 —
b1 b1 b1 b1 b1 b1 b1 b1 b1 b1




= y — x + 8(x + 2)1/2
b1 b1 b1 b1 b1 b1 b1
−1/2b 1 =b1yb 1 — b1xb1+b18.


An interval of definition for the solution of the differential equation is (—
b1 b1 b1 b1 b1 b1 b1 b1 b1 b1 b1 b1


2, ∞) because yj is not defined at x = —2.
b1 b1 b1 b1 b1 b1 b1 b1 b1 b1



18. Since tan x is not defined for x = π/2 + nπ, n an integer, the domain of y = 5 tan 5x is
b1 b1 b1 b1 b1 b1 b1 b1 b 1 b1 b1 b1 b1 b1 b1 b1 b1 b1 b 1 b 1 b1 b1 b1


{x b 1 b 1 5x /= π/2 + nπ}
b1 b1 b1 b1



or {x b1
b 1
x /= π/10 + nπ/5}. Fromj y = 252sec
b1 b1 b1 b1 b1 b1 b 1 b1 b1 b 1 5x we have b1 b1




2 2 2
y .

An interval of definition for the solution of the differential equation is (—
b1 b1 b1 b1 b1 b1 b1 b1 b1 b1 b1 b1


π/10, π/10). An- other interval is (π/10, 3π/10), and so on.
b1 b1 b1 b1 b1 b1 b1 b1 b1 b1



19. The domain of the function is {x
b1 4 — x b1 b1 b1 b1 b1 b1 b1 /= 0} or {x
b 1 b1 b1 x /= —
b 1 b 1


2 or x /= 2}. From y = 2x/(4 — x2)2 we have
b1 b1 b 1 b 1 b1 b1 b 1 b1 b1 b1 b1 b1


b 1 b 1 1
yj = 2x b1 b1 b 1 = 2xy2.
b1
2

4 — x2b1 b1



An interval of definition for the solution of the differential equation is (—
b1 b1 b1 b1 b1 b1 b1 b1 b1 b1 b1 b1


2, 2). Other inter- vals are (—∞, —2) and (2, ∞).
b1 b1 b1 b1 b1 b1 b1 b1 b1 b1


20. The function is y = 1/ 1 — sin x , whose domain is obtained from 1 — sin x /= 0 or sin x /= 1.
b1 b1 b1 b1 b1 b1 b1 b1 b1 b1 b1 b1 b1 b1 b1 b1 b1 b1 b1 b1 b1 b1 b1 b1 b1


Thus, the domain is {x x /= π/2 + 2nπ}. From y =2— (1 — sin x) (— cos x) we have
b1 b1 b1 b1 b 1 b1 b1 b1 b1 b1 b1 b1 b1 b 1 b1 b1 b1 b1 b1 b1 b1




2yj = (1 — sin x)−3/2 cos x = [(1 — sin x)−1/2]3 cos x = y3 cos x.
b1 b1 b1 b1 b1 b1 b1 b1 b1 b1 b1 b1 b1 b1 b1 b1 b1 b1




An interval of definition for the solution of the differential equation is (π/2, 5π/2). Anot
b1 b1 b1 b1 b1 b1 b1 b1 b1 b1 b1 b1 b1 b1

, Solutionb1andb1Answerb1Guide:b1Zill,b1DIFFERENTIALb1EQUATIONSb1Withb1MODELINGb1APPLICATIONSb12024,b19780357760192; b1Chapter
b1#1:
herb1oneb1isb1(5π/2,b19π/2),b1andb1sob1on.
$11.99
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada

Conoce al vendedor

Seller avatar
Los indicadores de reputación están sujetos a la cantidad de artículos vendidos por una tarifa y las reseñas que ha recibido por esos documentos. Hay tres niveles: Bronce, Plata y Oro. Cuanto mayor reputación, más podrás confiar en la calidad del trabajo del vendedor.
TESTBANKOFFER Harvard university
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
107
Miembro desde
10 meses
Número de seguidores
2
Documentos
479
Última venta
1 semana hace
WELCOME TO BEST OFFER TESTBANKS AND SOLUTION MANUALS

Welcome to my shop TITLED [TESTBANKOFFER] where i offer best verified Testbanks& Solution Manuals At affordable price....... thankyou .........

4.3

39 reseñas

5
27
4
4
3
3
2
2
1
3

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes