100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4,6 TrustPilot
logo-home
Resumen

Summary - Statistics Ia (PSBE1-08) Psychology

Puntuación
-
Vendido
-
Páginas
24
Subido en
24-03-2025
Escrito en
2022/2023

The summary is very detailed and includes information from both books, the lectures, and extra explanations where necessary to make sure all concepts are thoroughly understood.

Institución
Grado

Vista previa del contenido

if you feel like it → paypal / buymeacoffee

, if you feel like it → paypal / buymeacoffee


Chapter 1 - Looking at Data - Distributions
1.1 Data
statistics → how we model uncertainty
→ summarizes quantitative data
→ helps make claims in the face of uncertainty
↳ since we can’t sample the whole population

General Terms
data → numerical or qualitative descriptions of an object
cases → the objects described by a set of data
​ ​ ↳ex: customers, subjects in a study, units in an experiment
label → a special variable used to differentiate the different cases
variable → a characteristic of a case
​ ↳ different cases can have different values (levels) of the variables
categorical variable → places a case in one of several groups/categories
quantitative variable → takes numerical values (for which arithmetic operations make sense)
​ ↳ needs a unit of measurement

Key Characteristics of a Data Set
What and how many cases does the data describe? (WHO?)
How many variables do the data have, and what are their exact definitions? (WHAT?)
What purpose does the data have? Can we draw conclusions for other cases? Are the
variables suitable? (WHY?)

Operationalization
important questions about operationalization:
→ does the operationalization capture what I want to study?
→ how is my operationalization related to other researchers’ operationalizations?
→ is there a standard way to operationalize my variable?
→ is my operationalization easily measurable?

Measurement Scales
- choose the highest possible and meaningful (concerning content) scale
nominal scale → assigns observations to unordered categories
↳ ex: favorite color
​ ​ - identities/labels (ex: gender, ID, …)
ordinal scale → assigns observations to ordered categories
↳ ex: satisfaction scale: (0) not satisfied at all → (9) very satisfied
- categorical: ex: how good are you in sports: good, satisfactory, poor
interval/ratio scale → assigns scores on a scale with quantitative information
​ ↳ ex: how many siblings do you have? 1,2,3,4,5,6,7,8,9,………
​ ​ - outcomes of calculations are sensible (ex: mean score = 5.2)
↳ has a true zero point

, if you feel like it → paypal / buymeacoffee




nominal ordinal interval ratio

categorizes and labels variables ✔ ✔ ✔ ✔

ranks categories in order ✔ ✔ ✔

has known, equal intervals ✔ ✔

has a true or meaningful zero ✔

Discrete vs. Continuous Measures
discrete data → “between” numbers are meaningless (without decimals)
↳ ex: how many siblings do you have: “2” and “3” are possible answers, but “2.5” is not
continuous data → “between” numbers have meaning (can have decimals)
↳ ex: how tall are you: all positive real numbers are meaningful answers
- nominal and ordinal scales tend to be discrete

1.2 Displaying distributions with graphs
exploratory data analysis → examining data to describe their main features
↳ by summarizing the data graphically
↳ or by summarizing characteristics of data with numbers
distribution of a variable → what values does the variable take and how often does it take them
- the choice for certain plots/graphs depends on the measurement scale/level of the variable:

nominal and ordinal scales interval and ratio scales




bar graph pie chart stemplot histogram


Distribution of Categorical Variables
- pie charts or bar graphs give counts or percents/proportion of cases that fall in each
category

Distribution of Quantitative Variables
stemplots (stem-and-leaf-plots)
- give a picture of a distribution while including the actual numerical values (best for small
numbers of observations, all above 0)
→ stem: consisting of all but the final digit of a value, written in a vertical column
→ leaf: final digit, in rows to the right of the stem (increasing order)
→ back to back stemplot: different datasets are written on both sides of the stem

Escuela, estudio y materia

Institución
Estudio
Grado

Información del documento

Subido en
24 de marzo de 2025
Número de páginas
24
Escrito en
2022/2023
Tipo
Resumen

Temas

$9.68
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada

Conoce al vendedor
Seller avatar
mikemarcu

Documento también disponible en un lote

Conoce al vendedor

Seller avatar
mikemarcu Rijksuniversiteit Groningen
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
8
Miembro desde
2 año
Número de seguidores
2
Documentos
6
Última venta
1 semana hace

0.0

0 reseñas

5
0
4
0
3
0
2
0
1
0

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes