100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4.2 TrustPilot
logo-home
Resumen

Summary - Statistics III (PSBE2-12) Psychology

Puntuación
-
Vendido
1
Páginas
46
Subido en
24-03-2025
Escrito en
2024/2025

The summary covers information from both books, the lectures, and additional explanations where necessary. All concepts are well explained to make sure everything is thoroughly understood.

Institución
Grado











Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Escuela, estudio y materia

Institución
Estudio
Grado

Información del documento

Subido en
24 de marzo de 2025
Número de páginas
46
Escrito en
2024/2025
Tipo
Resumen

Temas

Vista previa del contenido

paypal / buymeacoffee


Statistics 3



Table of Contents

reading from Agresti, unless specified ↴


Week Lecture Topic Reading

1 Introduction Revise Stats 2

2 Multiple Regression 11.1 - 3 + 11.6 - 7

3 Model Building in Regression 11.5 + 14.1 - 3

4 Logistic Regression 14 (M&M) + 15.1 - 3

5 Moderator Analysis 11.4 + 11.5

Exam Season

6 ANOVA Part 1 12.2 - 4

7 ANOVA Part 2 12.2 (M&M) + 12.1

8 ANOVA Part 3 12.4

9 ANCOVA 13.1 + 13.2 + 13.4

10 RM-ANOVA 12.5 + 12.6

I appreciate and thank you for any donation; all this money will (probably) go
toward staying alive at this point :)

, paypal / buymeacoffee


Lecture 1 - Introduction
- statistical methods help us determine the factors that explain variability among subjects
- scores on any variable are not the same for each person → they vary
↳ we aim to explain (part of) the variance in the scores → what makes the scores differ?


research design

- research studies can have different purposes:
1. describing the data → descriptive statistics, plots, etc.
2. making the best possible prediction → build the best prediction model
↳ e.g., chat GPT
3. answering a predefined research question → inferential statistics (stats 3)
↳ using a sample to generalize research results to a population
- examples of predefined research questions
do males differ from females in their mean worry scores?
does age influence worry scores?
- it is crucial to operationalize all our variables before collecting the data
↳ operationalization → defining how we measure the variables of interest
→ we also need to specify whether the variable is categorical or continuous
→ for accurate results, use validated and reliable measurement instruments
-❗the way we measure the variables determines which statistical methods can be used
- linear models can be used in almost all situations
↳ regardless of the number of variables or categories → we can use dummy variables


models and statistics

what is a model?
→ a representation of reality
→ captures the essential and ignores the rest (noise)
- models are the foundation of statistics
↳ most common models are linear models → 𝑌 = 𝑏0 + 𝑏1𝑋1 + 𝑏2𝑋2 +... + 𝑒

- statistics is the process of building and evaluating models
↳ not very good at evaluating models or determining whether a model fits well
→ however, statistics is very good at telling which of 2 (nested) models fits better
- all traditional tests (e.g., t-test, ANOVA, regression) can be reformulated as model
comparisons → model comparison approach
↳ model comparison can do more than traditional tests and also prevent P-hacking

, paypal / buymeacoffee

model comparison
- the idea of model comparison is to fit 2 different nested models and compare them
nested models → all terms of a smaller model are also included in a larger model

↳ e.g., model 1 → 𝑦 = 𝑏0 + 𝑏1𝑥1

model 2 → 𝑦 = 𝑏0 + 𝑏1𝑥1 + 𝑏2𝑥2 (the only difference is 𝑏2𝑥2)

- in model comparison, we are interested in:
→ how much does the fit improve if 𝑏2𝑥2 is included in the model, beyond what’s already

in the model
→ whether it is worth keeping the additional predictor(s)
→ whether the fit improves enough to justify the added complexity
- examples
1. can variation be explained by differences in gender?
↳ we can test this with
→ two-sample t-test
→ ANOVA (2 groups)
→ simple linear regression with one dummy for gender
or we can use model comparison:

model 1 → 𝑦 = 𝑏0

model 2 → 𝑦 = 𝑏0 + 𝑏1𝐺𝐸𝑁𝐷𝐸𝑅

↳ we ask ‘is the difference between models significant?’

2. if we know the gender, do age differences explain (additional) variation?
↳ controlled for gender, we can test this with
→ multiple regression model
→ ANCOVA
or we can use model comparison

model 1 → 𝑦 = 𝑏0 + 𝑏1𝐺𝐸𝑁𝐷𝐸𝑅 (add b1GENDER to control for gender)

model 2 → 𝑦 = 𝑏0 + 𝑏1𝐺𝐸𝑁𝐷𝐸𝑅 + 𝑏2𝐴𝐺𝐸

→ analog for controlling for age
3. if we know both age and gender, does having a child and the age
of the oldest child explain (additional) variance?
↳ this can’t be tested with traditional tests
→ we can only test whether bparent = 0 or bage child = 0 but
not both at the same time (are the slopes significant?)

, paypal / buymeacoffee

↳ however, we can test it using model comparison

model 1 → 𝑦 = 𝑏0 + 𝑏1𝐴𝐺𝐸 + 𝑏2𝐺𝐸𝑁𝐷𝐸𝑅

model 2 → 𝑦 = 𝑏0 + 𝑏1𝐴𝐺𝐸 + 𝑏2𝐺𝐸𝑁𝐷𝐸𝑅 + 𝑏3𝑃𝐴𝑅𝐸𝑁𝑇 + 𝑏4𝐴𝐺𝐸𝐶𝐻𝐼𝐿𝐷

↳ we find a P-value for the increase in explained variation based on both variables


P-values and P-hacking
P-value → the probability of obtaining results at least as extreme as the observed result, given
that the null hypothesis is correct
↳ we assume the same, fixed sample size, drawn from the same population
- we need to follow strict rules to apply and interpret P-values:
1. only compute one P-value
→ calculating multiple P-values increases the probability of making a type I error
→ we can only use more if we make corrections (e.g., Bonferroni)
2. the assumptions must be met
3. the sample size must be specified in advance
→ don’t collect additional data if the P-value doesn’t align with your expectations
P-hacking → running multiple tests on the same data and reporting only the significant results
- P-values reveal only whether there is an effect or not → nothing else that is useful
- to discover how large the effect is:
1. estimation
→ inspect means, SD, correlations, effect sizes, CIs
→ if needed, use Bonferroni corrections
2. graphical analysis
3. model comparison
→ help us keep the number of P-values low
4. Bayesian statistics
→ limitation: difficult to use
$9.62
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada

Conoce al vendedor
Seller avatar
mikemarcu

Documento también disponible en un lote

Conoce al vendedor

Seller avatar
mikemarcu Rijksuniversiteit Groningen
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
6
Miembro desde
2 año
Número de seguidores
2
Documentos
6
Última venta
1 mes hace

0.0

0 reseñas

5
0
4
0
3
0
2
0
1
0

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes