100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4.2 TrustPilot
logo-home
Resumen

Summary - Statistics 2 (PSBE2-07) Psychology

Puntuación
-
Vendido
-
Páginas
43
Subido en
24-03-2025
Escrito en
2024/2025

The summary is very detailed and includes information from both books, the lectures, and extra explanations where necessary to make sure all concepts are thoroughly understood.

Institución
Grado











Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Escuela, estudio y materia

Institución
Estudio
Grado

Información del documento

Subido en
24 de marzo de 2025
Número de páginas
43
Escrito en
2024/2025
Tipo
Resumen

Temas

Vista previa del contenido

paypal / buymeacoffee


Statistics 2



Table of Contents


Week Lecture Topic Reading

1 Simple Linear Regression 1 10.1 (M&M)

2 Simple Linear Regression 2 10.2 (M&M)

3 Inference for Regression and Correlation 10.2 (M&M) + A1

4 Multivariate Relationships 2.5 + 2.7 (M&M) + 10 (Agresti)

5 Multiple Linear Regression 1 11.1 (M&M)

6 Multiple Linear Regression 2 11.6 + 11.7 (Agresti)

7 Multiple Linear Regression 3 11.2 (M&M)

Exam Season

8 ANOVA Part 1 12.1 (M&M)

9 ANOVA Part 2 12.2 (M&M)

10 ANOVA Part 3 13 (M&M)

11 Intro to Bayesian Statistics A2

12 Good and Bad Statistics A3

I appreciate and thank you for any donation; all this money will (probably) go
toward getting uni books :)




1

, paypal / buymeacoffee


Lecture 1 - Simple Linear Regression 1

x variable:
→ explanatory/independent variable
→ continuous or categorical
↳ the values of x define different subpopulations for each x

simple linear regression model

- simple linear regression studies the relationship between a response variable y and a single
explanatory variable x
↳ the mean of y changes as x changes
assumption → the observed values of y are Normally
distributed with a mean dependent on x
↳ all means (y) lie on a line when plotted against x
- all y with the same x vary according to N(μ, σ) → σ is the same for all x

µ𝑦 = β0 + β1𝑥
simple regression line

β0 → intercept (y when x = 0)
β1 → slope (the change in y for a one-unit change in x)

population regression line
population regression line → describes how the mean response µ𝑦 changes with 𝑥

↳ goal → estimate β₀ and β₁ from a sample to make predictions and infer the relationship
between x and y in the population
- the statistical model consists of
→ the population regression line:
DATA = FIT + RESIDUAL
FIT → subpopulation means → β0 + β1𝑥

RESIDUAL → deviations from the fit → ε (epsilon)

→ a description of the variation of y about the line:

𝑦𝑖 = β0 + β1𝑥𝑖 + ϵ𝑖
β0 + β1 → mean response when x = x1

εi → independent deviations with N(0, σ)
- linear regression allows us to infer not only about subpopulations for which we have data but
❗caution)
also for x that are not present (




2

, paypal / buymeacoffee

estimating the regression parameters
- we use the least-squares line as a basis for inference about a population from sample data
❗only when the statistical model holds → all assumptions are met
the least-squares formulas (refresh)
- the least-squares line’s model →​ ​ 𝑦 = 𝑏0 + 𝑏1𝑥
𝑠𝑦
slope → ​ ​ 𝑏1 = 𝑟 𝑠𝑥

intercept → ​ ​ 𝑏0 = 𝑦 − 𝑏1𝑥

𝑠𝑥𝑦 (𝑐𝑜𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒)
- “r” is the correlation between y and x correlation coefficient → 𝑟 = 𝑠𝑥𝑠𝑦

1
covariance → 𝑠𝑥𝑦 = 𝑛−1
∑(𝑥𝑖 − 𝑥)(𝑦𝑖 − 𝑦)

predicting parameters
^
- the predicted value of y for any given x* → 𝑦 = 𝑏0 + 𝑏1𝑥 *

residuals → ​​ ei = observed response - predicted response

= 𝑦𝑖 − 𝑦𝑖

=𝑦 − 𝑏 − 𝑏 𝑥
𝑖 0 1 𝑖

↳ the residuals ei correspond with the model’s deviation εi so we use them in the model
2
- the model standard deviation σ is given by → 𝑠 = 𝑠
2
2
2 Σ𝑒𝑖 Σ(𝑦𝑖−𝑦𝑖)
𝑠 = 𝑛−2
= 𝑛−2

- before using the model, we have to visually check the data to see if the conditions are met
↳ if residuals are (roughly) uniformly spread, we assume a common standard deviation




3

, paypal / buymeacoffee


Lecture 2 - Simple Linear Regression 2


confidence intervals and significance tests
- a level C confidence interval (CI) for β1 is:

𝑏1 ± 𝑡 * 𝑆𝐸𝑏
1

t* → the value for the t(n-2) curve with area C between -t* and t*

- because we don’t know σ, we estimate it by s → we move to a t distribution with n - 2 degrees
of freedom
- to test H0: β1 = 0 (no effect), we compute the test statistic:
𝑏1
𝑡= 𝑆𝐸𝑏
1


↳ H0: β1 = 0 says that linear regression of y on x has no value for predicting y
- a very small P-value doesn’t mean we found a strong relationship, but that the result is
statistically significant → a CI will provide more information

analysis of variance for regression
- ANOVA or Analysis of Variance
↳ statistical method that splits the variation of the data into separate sources:
SSTotal = SSModel + SSError
2
total sum of squares (SST) → Σ(𝑦𝑖 − 𝑦)

↳ variance(y) → SST/n-1
explained part (SSR/SSM) → the variation in y that can be attributed to the linear relationship
with x, captured by the regression model
↳ how well the regression model explains the variation in y
unexplained part (SSE) → observed values vary from the regression line

↳ measures the discrepancies between the observed y (yi) and the predicted y (𝑦𝑖)




2
𝑆𝑆𝑀 = 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 − 𝑚𝑒𝑎𝑛 = Σ(𝑦𝑖 − 𝑦𝑖)
2
𝑆𝑆𝐸 = 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 − 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 = Σ(𝑦𝑖 − 𝑦𝑖)




4
$9.02
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada

Conoce al vendedor
Seller avatar
mikemarcu

Documento también disponible en un lote

Conoce al vendedor

Seller avatar
mikemarcu Rijksuniversiteit Groningen
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
6
Miembro desde
2 año
Número de seguidores
2
Documentos
6
Última venta
1 mes hace

0.0

0 reseñas

5
0
4
0
3
0
2
0
1
0

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes