100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4.2 TrustPilot
logo-home
Examen

SOA PA EXAM QUESTIONS AND CORRECT ANSWERS

Puntuación
-
Vendido
-
Páginas
25
Grado
A+
Subido en
21-03-2025
Escrito en
2024/2025

SOA PA EXAM QUESTIONS AND CORRECT ANSWERS What to examine when assessing the bivariate relationship between a Continuous predictor variable and a Continuous target variable? ANSWScatter plots. Correlation between each variable [cor() in R]. What to examine when assessing (univariate analysis) a Continuous predictor variable? ANSWAssess the histogram of the distribution. Check the skewness (does it need to have a log transformation). - Check for extreme (unreasonable) outliers - Check for obvious errors in data - Check for obvious duplicates What to examine when assessing the bivariate relationship between a Continuous predictor variable and a Continuous target variable? ANSWScatter plots. Correlation between each variable [cor() in R]. What to examine when assessing (univariate analysis) a Continuous predictor variable? ANSWAssess the histogram of the distribution. Check the skewness (does it need to have a log transformation). - Check for extreme (unreasonable) outliers - Check for obvious errors in data - Check for obvious duplicates

Mostrar más Leer menos
Institución
SOA
Grado
SOA










Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Escuela, estudio y materia

Institución
SOA
Grado
SOA

Información del documento

Subido en
21 de marzo de 2025
Número de páginas
25
Escrito en
2024/2025
Tipo
Examen
Contiene
Preguntas y respuestas

Temas

Vista previa del contenido

SOA PA EXAM QUESTIONS AND
CORRECT ANSWERS
What to examine when assessing the bivariate relationship between a Continuous predictor variable
and a Continuous target variable? ANSW✅✅Scatter plots. Correlation between each variable
[cor() in R].



What to examine when assessing (univariate analysis) a Continuous predictor variable?
ANSW✅✅Assess the histogram of the distribution. Check the skewness (does it need to have a log
transformation).

- Check for extreme (unreasonable) outliers

- Check for obvious errors in data

- Check for obvious duplicates



What to examine when assessing (univariate analysis) a Factor predictor variable?
ANSW✅✅Assess Bar chart. (Count of observations per factor level)



What data questions should be considered while reading the project statement? ANSW✅✅Is the
project statement more interested in interpretable models or more accurate complicated models?

What type of variable is the target variable?

What type of variable are the predictor variables?

Are there any outliers that need to be removed?

Are there any Factor variables that could be combined?



R-Code; Histogram Continuous Variable ANSW✅✅ggplot(df, aes(x = variable)) +

geom_histogram(bins = 30) +

labs(x = "variable")



R-Code; Bar chart for a factor variable ANSW✅✅ggplot(df, aes(x = variable)) +

geom_bar() +

labs(x = "variable")

,What to examine when assessing the bivariate relationship between a Factor predictor variable and
a binary target variable? ANSW✅✅A table to asses (with rows as factor levels) the mean
probabilities, counts of observations of each factor, and counts of each observation of each binary
target.



What to examine when assessing the bivariate relationship between a Continuous predictor variable
and a binary target variable? ANSW✅✅- A graph with separate histograms for a continuous
variable, one for those with target binary = 0 and one for those with binary = 1;

- Box plots summarized based on binary target;

- Tables summarizing the mean, median, and count of the predictor based on each binary target



What to examine when assessing the bivariate relationship between a Factor predictor variable and
a Continuous target variable? ANSW✅✅Box Plots and tables summarizing the mean, median, and
count of the target based on each factor



R-Code; Table for binary target and factor variable ANSW✅✅data %>%

group_by(variable) %>%

summarise(

zeros = sum(Target == 0),

ones = sum(Target == 1),

n = n(),

proportion = mean(Target)

)



R-Code; Separate histograms for a continuous variable and a binary target ANSW✅✅ggplot(

data,

aes(

x = variable,

group = Target,

fill = as.factor(Target),

y = ..density..

)

)+

, geom_histogram(position = "dodge", bins = 30)



R-Code; Relevel Factor variables ANSW✅✅table <- as.data.frame(table(df$variable))

max <- which.max(table[, 2])

level.name <- as.character(table[max, 1])

df$variable <- relevel(df$variable, ref = level.name)



R-Code; Remove all observations in entire data set of a variable greater than or equal to 50
ANSW✅✅data <- data[data$variable <= 50, ]



R-Code; Remove all observations of a factor variable = "value" ANSW✅✅toBeRemoved <-
which(data$factor=="value")

data <- data[-toBeRemoved, ]



R-Code; Combine factor levels into new factors. ANSW✅✅var.levels <- levels(df$variable)

df$occupation_comb <- mapvalues(df$variable, var.levels, c("Group12", ... , "GroupNA"))



R-Code; remove a variable from the dataframe. ANSW✅✅df$variable <- NULL



R-Code; Create training and testing sets. ANSW✅✅set.seed(n)

train_ind <- createDataPartition(df$Target, p = 0.7, list = FALSE)

data.train <- df[train_ind, ]

data.test <- df[-train_ind, ]



What type of data to use a log transformation? ANSW✅✅Right Skewed (common with variables
of Time, Distance, or Money which have a lower boundary of 0)



What type of data to use a Logit transformation? ANSW✅✅Binary (boolean) Target variable



Define Principal Component Analysis ANSW✅✅- An unsupervised learning technique which
linearly combines the initial variables in a data set to create new orthogonal principal components
which then can be used to assess the correlation between the initial variables.
$13.49
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada


Documento también disponible en un lote

Conoce al vendedor

Seller avatar
Los indicadores de reputación están sujetos a la cantidad de artículos vendidos por una tarifa y las reseñas que ha recibido por esos documentos. Hay tres niveles: Bronce, Plata y Oro. Cuanto mayor reputación, más podrás confiar en la calidad del trabajo del vendedor.
PEAKGRADES Chamberlain College Of Nursing
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
26
Miembro desde
1 año
Número de seguidores
6
Documentos
4006
Última venta
3 semanas hace
PEAK GRADES

Hello everyone...Explore a wide range of Nursing Exams, Test Banks, Study Guides, and other valuable study materials on this page. If you need any additional resources, simply reach out to us, and we’ll deliver them promptly! Please remember to leave a review after your purchase to help us improve customer satisfaction. Thank you

4.3

4 reseñas

5
2
4
1
3
1
2
0
1
0

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes