100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4,6 TrustPilot
logo-home
Examen

Solutions for Discrete Mathematics, 8th edition by Johnsonbaugh

Puntuación
-
Vendido
-
Páginas
212
Grado
A+
Subido en
18-03-2025
Escrito en
2024/2025

Solutions for Discrete Mathematics, 8th edition by Johnsonbaugh

Institución
Discrete Mathematics, 8th Edition
Grado
Discrete Mathematics, 8th edition











Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Escuela, estudio y materia

Institución
Discrete Mathematics, 8th edition
Grado
Discrete Mathematics, 8th edition

Información del documento

Subido en
18 de marzo de 2025
Número de páginas
212
Escrito en
2024/2025
Tipo
Examen
Contiene
Preguntas y respuestas

Temas

Vista previa del contenido

SOLUTIONS for
Discrete Mathematics, 8th
TU

edition
Author (s): Richard Johnsonbaugh
VI
A
AP
PR
O
VE
D
?

,ST
U
Solutions to Selected Exercises
VI
Section 1.1
2. {2, 4} 3. {7, 10} 5. {2, 3, 5, 6, 8, 9} 6. {1, 3, 5, 7, 9, 10}

8. A 9. ∅ 11. B 12. {1, 4} 14. {1}
A
15. {2, 3, 4, 5, 6, 7, 8, 9, 10} 18. {n ∈ Z+ | n ≥ 6} 19. {2n − 1 | n ∈ Z+ }

21. {n ∈ Z+ | n ≤ 5 or n = 2m, m ≥ 3} 22. {2n | n ≥ 3} 24. {1, 3, 5}
AP
25. {n ∈ Z+ | n ≤ 5 or n = 2m + 1, m ≥ 3} 27. {n ∈ Z+ | n ≥ 6 or n = 2 or n = 4}

29. 1 30. 3

33. We find that B = {2, 3}. Since A and B have the same elements, they are equal.

34. Let x ∈ A. Then x = 1, 2, 3. If x = 1, since 1 ∈ Z+ and 12 < 10, then x ∈ B. If x = 2, since 2 ∈ Z+ and
22 < 10, then x ∈ B. If x = 3, since 3 ∈ Z+ and 32 < 10, then x ∈ B. Thus if x ∈ A, then x ∈ B.
PR
Now suppose that x ∈ B. Then x ∈ Z+ and x2 < 10. If x ≥ 4, then x2 > 10 and, for these values of x,
x∈/ B. Therefore x = 1, 2, 3. For each of these values, x2 < 10 and x is indeed in B. Also, for each of
the values x = 1, 2, 3, x ∈ A. Thus if x ∈ B, then x ∈ A. Therefore A = B.

37. Since (−1)3 − 2(−1)2 − (−1) + 2 = 0, −1 ∈ B. Since −1 ∈
/ A, A 6= B.

38. Since 32 − 1 > 3, 3 ∈
/ B. Since 3 ∈ A, A 6= B. 41. Equal 42. Not equal
O
45. Let x ∈ A. Then x = 1, 2. If x = 1,

x3 − 6x2 + 11x = 13 − 6 · 12 + 11 · 1 = 6.
VE
Thus x ∈ B. If x = 2,
x3 − 6x2 + 11x = 23 − 6 · 22 + 11 · 2 = 6.
Again x ∈ B. Therefore A ⊆ B.

46. Let x ∈ A. Then x = (1, 1) or x = (1, 2). In either case, x ∈ B. Therefore A ⊆ B.
D
49. Since (−1)3 − 2(−1)2 − (−1) + 2 = 0, −1 ∈ A. However, −1 ∈
/ B. Therefore A is not a subset of B.

50. Consider 4, which is in A. If 4 ∈ B, then 4 ∈ A and 4 + m = 8 for some m ∈ C. However, the only value
of m for which 4 + m = 8 is m = 4 and 4 ∈ / C. Therefore 4 ∈
/ B. Since 4 ∈ A and 4 ∈
/ B, A is not a
?
subset of B.

Copyright c 2018 Pearson Education, Inc.

, 2 SOLUTIONS


53.
ST
U
A B
U
54.
VI
U
A B
A
56.
AP
A B U



C
PR
57.
U
A
B
C
O
59.
U
A B
VE
C



62. 32 63. 105 65. 51
D
67. Suppose that n students are taking both a mathematics course and a computer science course. Then
4n students are taking a mathematics course, but not a computer science course, and 7n students are
taking a computer science course, but not a mathematics course. The following Venn diagram depicts
?
the situation:

Copyright c 2018 Pearson Education, Inc.

, SOLUTIONS 3


'$
'$
ST
Math CompSci

4n n 7n

&%
&%

Thus, the total number of students is
4n + n + 7n = 12n.
U
The proportion taking a mathematics course is

5n 5
= ,
VI
12n 12
which is greater than one-third.

69. {(a, 1), (a, 2), (b, 1), (b, 2), (c, 1), (c, 2)}
A
70. {(1, 1), (1, 2), (2, 1), (2, 2)} 73. {(1, a, a), (2, a, a)}

74. {(1, 1, 1), (1, 2, 1), (2, 1, 1), (2, 2, 1), (1, 1, 2), (1, 2, 2), (2, 1, 2), (2, 2, 2)}

77. Vertical lines (parallel) spaced one unit apart extending infinitely to the left and right.
AP
79. Consider all points on a horizontal line one unit apart. Now copy these points by moving the horizontal
line n units straight up and straight down for all integers n > 0. The set of all points obtained in this
way is the set Z × Z.

80. Ordinary 3-space
PR
82. Take the lines described in the instructions for this set of exercises and copy them by moving n units out
and back for all n > 0. The set of all points obtained in this way is the set R × Z × Z.

84. {1, 2}
{1}, {2}

85. {a, b, c}
O
{a, b}, {c}
{a, c}, {b}
{b, c}, {a}
{a}, {b}, {c}
VE
88. False 89. True 91. False 92. True

94. ∅, {a}, {b}, {c}, {d}, {a, b}, {a, c}, {a, d}, {b, c}, {b, d}, {c, d}, {a, b, c}, {a, b, d},
{a, c, d}, {b, c, d}, {a, b, c, d}. All except {a, b, c, d} are proper subsets.

95. 210 = 1024; 210 − 1 = 1023 98. B ⊆ A 99. A = U
D
102. The symmetric difference of two sets consists of the elements in one or the other but not both.

103. A 4 A = ∅, A 4 A = U , U 4 A = A, ∅ 4 A = A
?
105. The set of primes

Copyright c 2018 Pearson Education, Inc.
$19.99
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada

Conoce al vendedor

Seller avatar
Los indicadores de reputación están sujetos a la cantidad de artículos vendidos por una tarifa y las reseñas que ha recibido por esos documentos. Hay tres niveles: Bronce, Plata y Oro. Cuanto mayor reputación, más podrás confiar en la calidad del trabajo del vendedor.
MedGeek West Virgina University
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
1219
Miembro desde
3 año
Número de seguidores
865
Documentos
1854
Última venta
12 horas hace
Top-Rated Study Guides, Test Banks &amp; Solution Manuals for Nursing, Accounting, Chemistry, Statistics, Biology &amp; Other Subjects

Welcome to Your Ultimate Study Resource Hub! Looking for high-quality, reliable, and exam-ready study materials? You’re in the right place. Our shop specializes in original publisher content, including solutions manuals, test banks, and comprehensive study guides that are ideal for university and college students across various subjects. Every document is in PDF format and available for instant download—no waiting, no hassle. That means you get immediate access to top-tier academic resources the moment you need them, whether you're cramming for an exam or studying ahead. These materials are especially effective for exam preparation, offering step-by-step solutions, real test formats, and well-organized study guides that align with your coursework and textbooks. Whether you're a visual learner, a problem-solver, or need practice questions—there’s something for every study style. Know someone who needs better study tools? Share MedGeek with your mates and help them succeed too.

Lee mas Leer menos
4.1

75 reseñas

5
45
4
10
3
10
2
1
1
9

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes