100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4.2 TrustPilot
logo-home
Examen

Solution Manual for Game Theory Basics 1st Edition By Bernhard von Stengel, ISBN: 9781108843300, All 12 Chapters Covered, Verified Latest Edition

Puntuación
-
Vendido
-
Páginas
68
Grado
A+
Subido en
07-03-2025
Escrito en
2024/2025

Solution Manual for Game Theory Basics 1st Edition By Bernhard von Stengel, ISBN: 9781108843300, All 12 Chapters Covered, Verified Latest Edition

Institución
SOLUTION MANUAL Game Theory Basics 1st Edition
Grado
SOLUTION MANUAL Game Theory Basics 1st Edition











Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Libro relacionado

Escuela, estudio y materia

Institución
SOLUTION MANUAL Game Theory Basics 1st Edition
Grado
SOLUTION MANUAL Game Theory Basics 1st Edition

Información del documento

Subido en
7 de marzo de 2025
Número de páginas
68
Escrito en
2024/2025
Tipo
Examen
Contiene
Preguntas y respuestas

Temas

Vista previa del contenido

SOLUTION MANUAL
Game Theory Basics 1st Edition
By Bernhard von Stengel. Chapters 1 - 12




1

,TABLE OF CONTENTS s s s




1 - Nim and Combinatorial Games
s s s s s




2 - Congestion Games
s s s




3 - Games in Strategic Form
s s s s s




4 - Game Trees with Perfect Information
s s s s s s




5 - Expected Utility
s s s




6 - Mixed Equilibrium
s s s




7 - Brouwer’s Fixed-Point Theorem
s s s s




8 - Zero-Sum Games
s s s




9 - Geometry of Equilibria in Bimatrix Games
s s s s s s s




10 - Game Trees with Imperfect Information
s s s s s s




11 - Bargaining
s s




12 - Correlated Equilibrium
s s s




2

,Game Theory Basics
s s




Solutions to Exercises
s s



©s BernhardsvonsStengels2022

SolutionstosExercises1.1

(a) Lets≤sbesdefinedsbys(1.7).s Tosshowsthats≤sisstransitive,sconsidersx,sy,szswithsxs ≤sysandsys≤sz.sIfsxs=systhensxs
≤sz,sandsifsys=szsthensalsosxs≤sz.sSosthesonlyscasesleftsissxs<sysands ys <s z,swhichsimpliessxs <s zsbecauses<sisst
ransitive,sandshencesxs ≤sz.
Clearly,s≤sissreflexivesbecausesxs=sxsandsthereforesxs ≤sx.
Tosshowsthatsssssis≤santisymmetric,sconsidersxsandsyswithsxsssssysandsysssssx.sIf≤sweshadsxs≠sy≤
sthensxs<sysandsys

<sx,sandsbystransitivitysxs<sxswhichscontradictss(1.38).sHencesxs =s y,sassrequired.s Thissshowssthats≤siss
aspartialsorder.
Finally,swesshows(1.6),ssosweshavestosshowsthatsxs<sysimpliessxsssysandsxs≠sysandsvice ≤ sversa.sLetsxs<sy,swh
ichsimpliessxsysbys(1.7).sIfsweshadsxs=systhensxs<sx,scontradicting
≤ s(1.38),ssoswesalsoshavesxs≠sy.s Converse

ly,sxsss ysandsxs≠sysimplysbys(1.7)sxs <s ysors xs =s yswheresthessecondscasesissexcluded,
≤ shences xs <s y,sassrequire

d.
(b) Considersaspartialsordersandsassume ≤ s(1.6)sassasdefinitionsofs<.sTosshowsthats<sisstransitive,ssuppose

sxs<sy,sthatsis,sxsysandsxs≠sy,sandsys<sz,sthatsis,syszsandsys≠sz.sBecausessssisstransitive,sxssssz.sIfsweshadsxs=szsthe
≤ ≤
nsxsssssysands≤
ysssssxsandshencesxs=sys≤bysantisymmetrysofssss,swhichscontradicts
≤ s xs ≠s y,ssosweshaves xssss zs ands xs

≠s z,sthatsis,sxs <s zsbys(1.6),sassrequired.
≤ ≤
Also,s<sissirreflexive,sbecausesxs<sxswouldsbysdefinitionsmeansxsssxsandsxs≠sx,sbut≤stheslattersissnotstrue.
Finally,swesshows(1.7),ssosweshavestosshowsthatsxs ≤sysimpliessxs<sysorsxs=sysandsvicesversa,sgivensthats<s
issdefinedsbys(1.6).sLetsxs≤sy.sThensifsxs=sy,swesaresdone,sotherwisesxs≠sysandsthensbysdefinitionsxs<sy.s
Hence,sxs≤sysimpliessxs<sysorsxs=sy.sConversely,ssupposesxs <s ysorsxs=sy.s Ifsxs <s ysthensxs ≤sysbys(1.6),san
dsifsxs=systhensxs ≤sysbecauses≤sissreflexive.s Thisscompletessthesproof.

SolutionstosExercises1.2

(a) Ins analysings thes gamess ofs threes Nims heapss wheres ones heaps hass sizes one,s wes firsts looksatssomesexampl
es,sandsthensusesmathematicalsinductionstosproveswhatswesconjecturestosbestheslosingspositions.sAslosin
gspositionsissoneswhereseverysmovesisstosaswinningsposition,sbecausesthensthesopponentswillswin.s T
hespointsofsthissexercisesisstosformulatesasprecisesstatementstosbesproved,sandsthenstosprovesit.
First,sifstheresaresonlystwosheapssrecallsthatstheysareslosingsifsandsonlysifsthesheapssaresofsequalssize.s
Ifstheysaresofsunequalssize,sthenstheswinningsmovesisstosreducestheslargersheapssosthatsbothsheapssh
avesequalssize.




3

, Considersthreesheapssofssizess1,sm,sn,swheres1sssssmsssssn.sWe
≤sobserve
≤ sthesfollowing:s1,s1,smsisswinning,s
bysmovingstos1,s1,s0.sSimilarly,s1,sm,smsisswinning,sbysmovingstos0,sm,sm.sNext,s1,s2,s3sisslosings(obser
vedsearliersinstheslecture),sandshences1,s2,snsforsns4sisswinning.s1,s3,snsisswinningsforsanysns3sbysmovi
ngstos1,s3,s2.sFors1,s4,s5,sreducingsanysheapsproducessaswinningsposition,ssosthississlosing.
≥ ≥
Thesgeneralspatternsforstheslosingspositionssthussseemsstosbe:s1,sm,sms1,sforsevensnumbers + sm.s Thiss

includessalsosthescasesms=s0,swhichswescanstakesassthesbasescasesforsansinduction.s Wesnowsproceedst
osprovesthissformally.
Firstswesshowsthatsifsthespositionssofsthesforms1,sm,snswithsmssssssnsareslosingswhen ≤ smsissevensandsns=s
ms1,sthensthesesaresthesonly + slosingspositionssbecausesanysotherspositions1,sm,sns withsms s ns isswinnin

g.s Namely,sifsms =sns thensaswinning ≤ smovesfroms1,sm,smsissto s0,sm,sm,ssoswescan sassumesms<sn.s Ifsmsissevens

thensns>sms s 1s(otherwisesweswouldsbesinsthespositions1,sm,sms s 1)sandssostheswinningsmovesisstos1,sm,s
+
ms s 1.sIfsmsissoddsthenstheswinningsmovesisstos1,sm,sms1,sthessamesasspositions1,sms1,sms(thisswoulds alsos b
+ +
es as winnings moves froms 1,sm,sms sos theres thes winnings moves iss nots unique).
– −
Second,swesshowsthatsanysmovesfroms1,sm,sms+s1swithsevensmsisstosaswinningsposition,susingsassinductiv
eshypothesissthats1,smJ,smJs+s1sforsevensmJsandsmJs<smsissaslosingsposition.sThesmovestos0,sm,sms+s1spro
ducessaswinningspositionswithscounter-
movestos0,sm,sm.sAsmovestos1,smJ,sms+s1sforsmJs<smsisstosaswinningspositionswithsthescounter-
movestos1,smJ,smJs+s1sifsmJsissevensandstos1,smJ,smJs−s1sifsmJsissodd.sAsmovestos1,sm,smsisstosaswinningsposi
tionswithscounter-
movestos0,sm,sm.sAsmovestos1,sm,smJswiths mJs<s msissalsostosaswinningspositionswithsthescounter-
movestos1,smJs−s1,smJsifs mJsissodd,sandstos1,smJs 1,smJsifsmJsissevens(inswhichscasesmJs 1s<smsbecausesmsisseve
n).sThissconcludessthesinductionsproof.
+ +
ThissresultsissinsagreementswithsthestheoremsonsNimsheapssizessrepresentedsasssumssofspowerssofs2:s 1s
0
s ms s nsisslosingsifsandsonlysif,sexceptsfors2 ,sthespowerssofs2smakingsupsmsandsnscomesinspairs.sSosthesesmu
∗s +∗ +∗
stsbesthessamespowerssofs2,sexceptsfors1s=s20,swhichsoccurssinsonlysmsorsn,swheresweshavesassumedsthatsns
isstheslargersnumber,ssos1sappearssins thes representations ofs n:s Wes haves ms =s 2assssss2bssssss2c
fors as >s bs >s cs >ssssssss 1,ssos ms iss e
a s s s bs s s c + + +s ·s ·s · ·s ·s·s ≥
ven,s and,s withs thes sames a,sb,sc,s.s.s.,s ns =s 2 2 2 1s =s mssss 1.s Then
+ + +s ·s ·s ·s + +
∗1s ssssss
+s ∗msssss n+ssssss
s∗
0.s≡The
s∗
s followings iss ans examples usings thes bits representations where

ms =s12s(whichsdeterminessthesbitspatterns1100,swhichsofscoursesdependssonsm):

1 = 0001
12 = 1100
13 = 1101
Nim-sum 0 = 0000

(b) Wesuses(a).sClearly,s1,s2,s3sisslosingsassshownsins(1.2),sandsbecausesthesNim-
sumsofsthesbinarysrepresentationss01,s10,s11siss00.sExamplessshowsthatsanysotherspositionsisswinni
ng.sThesthreesnumberssaresn,sns 1,sns s 2.sIfsnsis+
sevensthensreducingsthesheapsofssizesns2stos1screatessthes
+
positionsn,sns 1,s1swhichsisslosingsassshownsins(a).sIfsnsissodd,sthensns 1sissevensandsnsss2s=s nsss1sss1ssosb
+ +
ysthessamesargument,saswinningsmovesisstosreducesthesNimsheapsofssizesnstos1s(whichsonlysworkssifs
+ + (s +s )s+
ns >s1).




4
$22.69
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada

Conoce al vendedor

Seller avatar
Los indicadores de reputación están sujetos a la cantidad de artículos vendidos por una tarifa y las reseñas que ha recibido por esos documentos. Hay tres niveles: Bronce, Plata y Oro. Cuanto mayor reputación, más podrás confiar en la calidad del trabajo del vendedor.
ProfessorsAcademy stuvia
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
26
Miembro desde
11 meses
Número de seguidores
7
Documentos
667
Última venta
1 semana hace
EXAMSHUB!!!!

TOP RATED EXAMS &amp; STUDY RESOURCES SHOP We offer Best Quality Exams, Testbanks, Solution manuals &amp; Other study materials which are A+ GRADED ON Pre-order &amp; order Basis......Buy without doubt!!!!!

5.0

232 reseñas

5
232
4
0
3
0
2
0
1
0

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes