100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4.2 TrustPilot
logo-home
Examen

DSCI 4520 FINAL EXAM QUESTIONS AND CORRECT ANSWERS

Puntuación
-
Vendido
-
Páginas
26
Grado
A+
Subido en
28-02-2025
Escrito en
2024/2025

DSCI 4520 FINAL EXAM QUESTIONS AND CORRECT ANSWERS With the k-NN model for classification, after we determined the k nearest neighbors of a new data record, how the class is predicted? -Average of the neighbors -Through a logistic regression between the neighbors -Majority vote determines the predicted class -Through a linear combination of neighbors CORRECT ANSW-majority vote determines the predicted class What statement is INCORRECT about the k-nearest neighbor (k-NN) method?

Mostrar más Leer menos
Institución
DSCI
Grado
DSCI










Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Escuela, estudio y materia

Institución
DSCI
Grado
DSCI

Información del documento

Subido en
28 de febrero de 2025
Número de páginas
26
Escrito en
2024/2025
Tipo
Examen
Contiene
Preguntas y respuestas

Temas

Vista previa del contenido

DSCI 4520 FINAL EXAM QUESTIONS
AND CORRECT ANSWERS
With the k-NN model for classification, after we determined the k nearest neighbors of a new data
record, how the class is predicted?



-Average of the neighbors

-Through a logistic regression between the neighbors

-Majority vote determines the predicted class

-Through a linear combination of neighbors ✅✅CORRECT ANSW-majority vote determines the
predicted class



What statement is INCORRECT about the k-nearest neighbor (k-NN) method?



-k is an arbitrary number that can be selected by trial-and-error

-Different k value can change the performance of the classifier

-When k=1 (closest record) the classifier performance is maximum

-Too small value for k may lead to over-fitting ✅✅CORRECT ANSW-when k=1 (closest record) the
classifier performance is maximum



Consider two models A and B. If the prediction accuracy of Model A is higher than that of Model B
for the training dataset, we can say that Model A is definitely better than Model B. ✅✅CORRECT
ANSW-false



What is the sensitivity score of the following confusion matrix given that "1" is positive? (rounded to
2 decimal places) ✅✅CORRECT ANSW-.71

sensitivity = tp/(tp+fn)



The main difference between k-NN classifiers and k-NN regression models is that the former does
not need a distance function, while the latter uses the Euclidean distance function. ✅✅CORRECT
ANSW-False



What can cause the over-fitting problem in k-NN classifiers?

,-splitting the data set

-incorrect distance function

-too small values of k

-too large values of k ✅✅CORRECT ANSW-too small values of k

We have trained a classification model and it's ROC curve is shown below. Given that the Area Under
the Curve (AUC) is our performance metric. Which model is performing better? ✅✅CORRECT
ANSW-A

whatever line is the highest



What is propensity score?



-predicted probability of class membership

-An arbitrary number assigned to each record

-an indicator of the correct cut-off value

-a measure that shows accuracy of the model ✅✅CORRECT ANSW-predicted probability of class
membership



In evaluating a predictive model with a numerical target, the root mean squared error (RMSE) has
the same unit as the predicted variable. ✅✅CORRECT ANSW-true



In the following confusion matrix, which cell is the FALSE POSITIVE? ✅✅CORRECT ANSW-C

lower left



What is the specificity score of the following confusion matrix given that "1" is positive? (rounded to
2 places) ✅✅CORRECT ANSW-.81

specificity = tn/(tn+fp)



What is the fall-out score of the following confusion matrix given that "1" is positive? (rounded to 2
places) ✅✅CORRECT ANSW-0.47



The cost of misclassification is always the same for false negative and false positive cases.
✅✅CORRECT ANSW-false

, In evaluating a predictive model with a numerical target, the mean absolute error (MAE) can be
negative or positive but the mean error (ME) is always positive. ✅✅CORRECT ANSW-false



What is the error rate of the following confusion matrix? (rounded to 2 decimal places)
✅✅CORRECT ANSW-0.41



In the confusion matrix the term "actual" refers to the observed labels of the data. ✅✅CORRECT
ANSW-true



Maximizing which performance metric, reduced type I and II errors of classification? ✅✅CORRECT
ANSW-AUC ROC



What is the predicted variable in the logistic regression model?



-RMSE

-Probability of class membership

-Confusion matrix

-A number between -1 and 1 ✅✅CORRECT ANSW-Probability of class membership



Which statement is correct about the cutoff value of the probability calculated by a logistic
regression model to be used for classification?



-Larger cutoff values result in higher model performance

-Smaller cutoff values result in higher model performance

-The cutoff value is an arbitrary value determined by model performance assessment

-The cutoff value must always be set to 0.5 ✅✅CORRECT ANSW-The cutoff value is an arbitrary
value determined by model performance assessment



Input variables (features) of the logistic regression model cannot be categorical. ✅✅CORRECT
ANSW-true



How can we turn the logistic regression model into the classification model?
$13.49
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada


Documento también disponible en un lote

Conoce al vendedor

Seller avatar
Los indicadores de reputación están sujetos a la cantidad de artículos vendidos por una tarifa y las reseñas que ha recibido por esos documentos. Hay tres niveles: Bronce, Plata y Oro. Cuanto mayor reputación, más podrás confiar en la calidad del trabajo del vendedor.
PEAKGRADES Chamberlain College Of Nursing
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
26
Miembro desde
1 año
Número de seguidores
6
Documentos
4006
Última venta
3 semanas hace
PEAK GRADES

Hello everyone...Explore a wide range of Nursing Exams, Test Banks, Study Guides, and other valuable study materials on this page. If you need any additional resources, simply reach out to us, and we’ll deliver them promptly! Please remember to leave a review after your purchase to help us improve customer satisfaction. Thank you

4.3

4 reseñas

5
2
4
1
3
1
2
0
1
0

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes