Equations with Modeling
Applications, 12th Edition by
Dennis G. Zill
Complete Chapter Solutions Manual are
included (Ch 1 to 9)
** Immediate Download
** Swift Response
** All Chapters included
,Solution and Answer Guide: Zill, DIFFERENTIAL EQUATIONS W ith MODELING APPLICATIONS 2024, 9780357760192; Chapter #1:
SO SO SO SO SO SO S
O S
O SO SO SO SO SO
Introduction to Differential Equations S O S O S O
SolutionandAnswerGuide O
S O
S O
S
ZILL,DIFFERENTIALEQUATIONSWITHMODELINGAPPLICATIONS2024, 9780357760192;
O
S O
S O
S O
S O
S O
S S O O
S
CHAPTER #1:INTRODUCTION TO DIFFERENTIALEQUATIONSSO O
S SO SO O
S
TABLEOFCONTENTS S
O S
O
End of Section Solutions........................................................................................................................................................................................... 1
S O S O S O
Exercises 1.1 .............................................................................................................................................................................................................................................. 1
S O
Exercises 1.2 .......................................................................................................................................................................................................................................... 14
S O
Exercises 1.3 ..........................................................................................................................................................................................................................................22
S O
Chapter1 in Review Solutions........................................................................................................................................................30
S
O SO SO SO
ENDOFSECTIONSOLUTIONS S
O S
O S
O
EXERCISES 1.1 S O
1. Second order; linear S O S O
2. Third order; nonlinear because of (dy/dx) 4 S O S O S O S O S O
3. Fourth order; linear S O S O
4. Second order; nonlinear because of cos(r + u) S O S O S O S O S O S O SO
√ SO
5. Second order; nonlinear because of (dy/dx) 2 or S O S O S O S O S O
SO S O
1 + (dy/dx)2 S O S O
6. Second order; nonlinear because of R2 S O S O SO S O S O
7. Third order; linear S O S O
8. Second order; nonlinear because of ẋ2 S O S O SO S O S O O
S
9. First order; nonlinear because of sin ( dy/dx)
S O S O S O S O S O SO
10. First order; linear S O S O
11. Writing the differential equation in the form x(dy/dx) + y2 = 1, we see that it is nonlinear in y beca
SO S O S O SO SO SO S O S O S O
S O
S O SO SO SO SO SO SO S O O
S SO
use of y2. However, writing it in the form (y2 —1 )(dx/dy) + x = 0, we see that it is linear in x.
SO SO SO SO SO SO SO SO S O
S O
O
S SO SO SO S O SO SO SO SO SO S O S O S O
12. Writing the differential equation in the form u(dv/du) + (1 + u)v = ueu we see that it is linearinv.
SO SO SO SO SO SO SO SO SO SO SO S O S O
S O
SO SO SO SO S O O
S O
S O
S
However,writingiti nthef orm(v + uv —ueu)(du/dv) +u = 0,w es eethatitis nonlinear in u. O
S O
S O
S O
S O
S O
S O
S SO SO O
S O
S O
S SO SO O
S O
S O
S O
S O
S S O S O S O
13. Fromy=e − O
S O
S O
S
x/2 we obtain yj = — 1e−
SO SO
S O
SO O
S
O
S
x/2
. Then 2yj + y = —e−
O
S SO
S O
O
S S O SO
x/2
+ e− SO
x/2 = 0. SO
2
1
,Solution and Answer Guide: Zill, DIFFERENTIAL EQUATIONS W ith MODELING APPLICATIONS 2024, 9780357760192; Chapter #1:
SO SO SO SO SO SO S
O S
O SO SO SO SO SO
Introduction to Differential Equations S O S O S O
6 6—
14. From y = S O S O — e 20t weobtain dy/dt = 24e−20t,s othat SO
SO SO SO SO
O
S
O
S O
S
5 5
dy +20y = 24e−20t 6 6 −20t SO S O
+ 20 — e = 24.
O
S SO SO
S O
SOS O
dt 5 5
S O
15. Fromy = e3x cos2x weobtainyj = 3e3x cos2x—2e3x sin2x andyjj = 5e3x cos2x— O
S SO SO
SO
O
S O
S O
S O
S
S O
SO
SO
O
S
SO
O
S O
S O
S
S O
SO
SO
O
S
12e3x sin2x, so that yjj — 6yj + 13y = 0. SO
O
S S O S O S O
S O
SO
S O
SO S O S O
j
16. From y = —c osxln(sec x + tan x ) we obtain y = —1 + sin xln(secx + tanx) and
SO SO S O O
S O
S O
S O
S SO O
S O
S SO SO SO SO S O
SO O
S SO O
S O
S O
S O
S SO O
S SO
jj jj
y = tanx+ cos xln(secx+ tanx). Then y + y = tanx.
SO S O SO O
S O
S SO SO O
S O
S O
S O
S O
S SO SO SO S O O
S SO S O O
S
17. The domain of the function, found by solving x+2 ≥ 0, is [—2, ∞). From yj = 1+2(x+2) −1/2
S O S O S O S O S O S O S O S O S O S O S O S O SO S O S O
SO S O
S O
we have S O
j 1/2 −
(y —x)y = (y — x)[1+ (2(x+ 2)
SO
S O SO SO SO O
S O
S O
S SO S OS O
SO
]
=y—x+2(y—x)(x+ 2)−1/2
O
S O
S O
S O
S O
S O
S
O
S O
S
= y — x + 2[x + 4(x + 2) 1/2 —x](x + 2)−1/2
SO S O SO SO S O SO S O SO S O
S OS O
S O SO
=y —x + 8(x + 2)1/2(x + 2)−1/2 = y — x + 8.
O
S SO O
S O
S SO O
S O
S SO SO
S O
S O SO SO O
S SO
An interval of definition for the solution of the differential equation is (—
S O S O S O S O S O S O S O S O S O S O S O S O
2, ∞) because yj is not defined at x = —2.
SO S O S O
S O
S O S O S O S O S O S O
18. Since tan x is not defined for x = π/2 + nπ, n an integer, the domain of y = 5 tan 5x is
SO SO O
S SO SO SO SO S O S O S O S O SO SO SO SO SO SO SO SO S O S O O
S SO SO
{x 5x /= π/2+nπ} SO S O O
S O
S O
S SO
or{ x x /= π/10+nπ/5}. Fromy j= 25s ec 25xw ehave
O
S SO S O SO SO O
S O
S O
S SO S O SO O
S SO O
S SO
j
y = 25(1 + tan2 5x)= 25 + 25 tan2 5x = 25 + y 2.
S O
S O S O
SO SO SO O
S SO O
S SO O
S SO SO O
S SO
An interval ofdefinition forthe solutionofthedifferential equationis (—π/10,π/10). An-
O
S O
S O
S O
S O
S O
S O
S O
S O
S O
S O
S O
S O
S O
S
Sother interval is (π/10, 3π/10), and so on.
O SO SO SO O
S S O SO SO
19. The domain of the function is {x 4 — x2 SO S O S O S O SO S O SO SO S O S O SO /= 0} or {x
S O SO SO x /= —2 orx /= 2} .Fromy j =
S O S O O
S O
S S O S O O
S O
S
S O
2x/(4 — x2)2 we have S O SO
S O
S O
1 2
= 2xy2.
yj = 2x SOS O S O
4—x2
S O
OS OS
An interval of definition for the solution of the differential equation is (—2, 2) . Other inter-
S O S O S O S O S O S O S O S O S O S O S O S O SO S O S O
vals are (—∞, —2) and (2, ∞) .
√
S O S O S O S O S O S O S O SO
20. The function is y = 1/ 1 — sin x , whose domain is obtained from 1 — sin x /= 0 or sin x /= 1.
SO S O S O S O S O SO SO O
S SO S O S O S O S O SO S O S O SO O
S S O S O SO S O O
S S O S O
Thus, the domain is {x x/= π/2+ 2nπ}. From y j= — (11 —sinx) −3/2
2
(— cosx) we have
SO SO O
S O
S SO S O O
S S O O
S SO SO SO S O SO S O SO O
S O
S S O
S O
O
S O
S SO SO
2yj = (1 —sinx) −3/2 cosx= [(1 —sinx) −1/2] 3 cosx = y3 cosx.
S O
O
S O
S O
S O
S
SO
O
S O
S SO O
S O
S O
S
SO
O
S SO O
S
SO
O
S
An interval of definition for the solution of the differential equation is (π/2, 5π/2) . Another one is
S O S O S O S O S O S O S O S O S O S O S O S O SO S O S O S O S O
(5π/2, 9π/2), and so on. SO S O S O S O
2
, Solution and Answer Guide: Zill, DIFFERENTIAL EQUATIONS W ith MODELING APPLICATIONS 2024, 9780357760192; Chapter #1:
SO SO SO SO SO SO S
O S
O SO SO SO SO SO
Introduction to Differential Equations S O S O S O
21. Writing ln(2X — 1) — ln(X — 1) = t and differentiating
SO S O S O S O S O S O S O SOS O SOS O SO SO
x
implicitly we obtain S O S O 4
— =1 S O 2
2X — 1 dt SO O
S S O
X —1 dt O
S O
S S O
t
2 1 dX –4 –2 2 4
— = 1
SO S O
X —1 dt
O
S
2X —1
S O
O
S O
S SO SO
–2
–4 O
S
dX
= —(2X —1)(X — 1) = (X — 1)(1 — 2X).
dt
SO SO O
S SO O
S SO SO SO O
S SO O
S
S O
Exponentiating both sides of the implicit solution we obtain S O S O S O S O S O S O S O S O
2X— O
S
1 t X —1
=e
O
S O
S SO O
S
S O
O
S
2X — 1 = Xet — et SO SO SO SO
S O
SO
(et —1) =(et —2)X SO
O
S O
S O
S
SO
O
S
et 1
X= .
et — 2
S O S O
S O
SO SO
Solving et — 2 = 0 we get t = ln 2. Thus, the solution is defined on (—
SO
S O
SO SO S O SO SO SO S O S O O
S S O SO SO SO SO S O SO
∞, ln 2) or on (ln 2,∞). The graph of the solution defined on (—
SO SO SO SO SO SO O
S S O S O S O S O S O S O S O S O
∞, ln 2) is dashed, and the graph of the solution defined on (ln 2, ∞) is solid.
SO SO S O S O S O S O S O S O S O S O S O S O S O S O S O S O S O
22. Implicitly differentiating the solution, we obtain S O S O S O S O S O
y
2 SOS O
dy dy 4
—2x — 4xy + 2y = 0
dx dx
SO S O SO O
S SO S O SO
S O S O
2
—x2 dy — 2xydx+ ydy = 0 S O
O
S O
S O
S O
S SO O
S SO SO
x
2xydx + (x2 —y)dy = 0. O
S O
S SO
S O
O
S SO SO
–4 O
S –2 2 4
–2
Using the quadratic formula to solve y2 — 2x2 y — 1 = 0
SO SO S O SO SO SO
SO S O
S O S O S O SOSO SOS O
√ √
fory,w egety = 2x2 ± 4x 4 + 4 /2 = x2 ± x4 +1.
SO SO
SO SO SO
S O SO
–4
O
S O
S O
S O
S S O SO SOS O S O S O O
S O
S
√
O
S
Thus, two explicit solutions are y1 = x2 +
SO
x4 + 1 and
S O
S O
SO SO SO SO SO S O
SOS O
√
SO S O
OO
S
y2 = x2 — x4 + 1 . Both solutions are defined on (—∞, ∞).
SOS O
S O
SOS O
S O
S O O
S S O S O S O S O S O S O SO
The graph of y1(x) is solid and the graph of y2 is dashed.
S O S O S O S O S O S O S O S O S O S O
SOS O
S O
3