100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4.2 TrustPilot
logo-home
Resumen

Statistics III Summary Second Partial exam

Puntuación
-
Vendido
-
Páginas
11
Subido en
02-06-2020
Escrito en
2019/2020

Summary of the second partial exam of Statistics III

Institución
Grado









Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Escuela, estudio y materia

Institución
Estudio
Grado

Información del documento

Subido en
2 de junio de 2020
Archivo actualizado en
11 de junio de 2020
Número de páginas
11
Escrito en
2019/2020
Tipo
Resumen

Temas

Vista previa del contenido

ANOVA and Code variables
ANOVA as a regression model
An ANOVA is a special case of regression
To put it differently: A regression with categorical independent variables is equivalent to ANOVA.
ANOVA stands for: analysis of variance

- Categorical/nominal IVs: Variables for which each case is placed into one of several available
categories. (Example: Gender, treatment group in an experiment).
- Categories must be mutually exclusive and exhaustive.
- Categories are not necessarily ordered.
- Categorical/nominal IVs can be included in a multiple regression model.
- How? By using sets of code variables:
# categories = g (groups) =⇒ # code variables = (g − 1)
- How to code categorical IVs? We will see several procedures:
1. Dummy variable coding
2. Contrasts coding

How to choose and make code-variables?
- AKA: indicator variable, 0-1 variable, dummy variable
For every observation you code
z = 1 if the person is from a certain group (e.g., Male)
z = 0 if the person is not from a certain group (e.g, Female)
For more than two groups you need multiple dummy-variables
- Number of groups = g, then the number of code variables g – 1
- Overall effect does not depend on different coding systems (e.g., same R, R 2, F − test)
- interpretation of individual regression coefficients differs on different coding schemes
-
Dummy-variable coding; Also known as reference coding.
Reference coding: Assign one group as ‘reference group’.
- That group: All Ci = 0.
- Other groups: One Ci = 1 other Cj’s zero.

The reference group…
- should be useful for comparisons. (Example: Control group like the ‘placebo’ group in clinical
experiments).
- should be well defined (do not use dubious groups like ‘other’).
- should not have (much) smaller sample size than the other groups.
Remember: The choice of the reference group is based on research goals and not on statistical
reasons.

Dummy-variable coding: Interpreting bi ’s




Conclusion: In general,
a = MRef.group, the sample mean of reference group.

, bi = Mi − MRef.group, the difference between the sample mean of group i and the sample mean of the
reference group (i = 1, 2, . . .).
Note: The dummy variables Ci correlate, hence the bi ’s are partial regression coefficients (and the
sr2i ’s do not sum up to R2Y ).

Dummy coding is limited: Using dummy coding you can compare general group means with a
reference mean but what if you want to know about other mean differences? In this case you can
set-up planned comparisons using contrast coding.
Contrast coding:
Test hypotheses using contrasts (linear combinations of the groups means).




Follow these rules to uniformize contrast codings:




Advantage and disadvantages regression versus ANOVA
Disadvantage:
- It is more complicated
- A researcher might not always know what means he is interested in
Advantage:
- It is easier and more natural to combine continuous and categorical independent variables
- ANOVA will estimate all possible interactions and with regression there is less testing
o Thus, less data fishing or p-hacking as with regression hypotheses have to be
specified in advance
o Better control overall error rate
o Less type 1 errors
o More power


Repeated Measures ANOVA
‘Usual’ ANOVA: Limitation
So far, we only allowed each subject to contribute with one score (one measurement) on the DV:
“Different subjects contribute to different means.”
What if each subject is measured in ALL levels of the treatment factor?
>> Repeated measures (M)ANOVA
- Generalization of paired sample t-test to more than 2 groups.
Imagine the following situations:
 Situation 1. A group of subjects is measured under various treatment conditions (or at different
points in time).
 Situation 2. Subjects are grouped according to their gender and measured under various
treatment conditions (or at different points in time).
$4.22
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada


Documento también disponible en un lote

Conoce al vendedor

Seller avatar
Los indicadores de reputación están sujetos a la cantidad de artículos vendidos por una tarifa y las reseñas que ha recibido por esos documentos. Hay tres niveles: Bronce, Plata y Oro. Cuanto mayor reputación, más podrás confiar en la calidad del trabajo del vendedor.
eefkedej Rijksuniversiteit Groningen
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
80
Miembro desde
7 año
Número de seguidores
73
Documentos
24
Última venta
1 año hace

4.0

9 reseñas

5
3
4
3
3
3
2
0
1
0

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes