100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4.2 TrustPilot
logo-home
Examen

APM3701 Assignment 2 (100% COMPLETE ANSWERS) 2025 (700123) - DUE 8 August 2025

Puntuación
-
Vendido
-
Páginas
37
Grado
A+
Subido en
17-02-2025
Escrito en
2024/2025

Partial Differential Equations - APM3701 Assignment 2 2025 (Unique Number: 700123) – DUE 8 August 2025 ;100 % TRUSTED workings, Expert Solved, Explanations and Solutions. For assistance call or W.h.a.t.s.a.p.p us on ...(.+.2.5.4.7.7.9.5.4.0.1.3.2)...........

Mostrar más Leer menos
Institución
Grado








Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Libro relacionado

Escuela, estudio y materia

Institución
Grado

Información del documento

Subido en
17 de febrero de 2025
Número de páginas
37
Escrito en
2024/2025
Tipo
Examen
Contiene
Preguntas y respuestas

Temas

Vista previa del contenido

AMP3701
ASSIGNMENT 2 2025
UNIQUE NO.
DUE DATE: 8 AUGUST 2025

, lOMoARcPSD|18222662




APM3701/102


3.2 Assignment 02 for 2025


ASSIGNMENT 02
CHAPTER 5 – CHAPTER 7 OF STUDY GUIDE
Assignment Unique number : 700123
CLOSING DATE: 8 August 2025

TAKE NOTE OF THE FOLLOWING:

• All numbers and sections in bracket refer to the Study Guide (SG) and to the Prescribe Book
(PB), unless specified otherwise.

• Please avoid repeating proofs of formulae and theorems already done in the Study Guide
and Prescribed Book, use or apply them directly instead.

• No mark will be awarded if you copy solution from past assignments and exam solutions or
repeat proof of formulae already done in the Study Guide and Prescribed Book


QUESTION 1

Consider the heat flow in an horizontal rod of length L units and heat conductivity 1. We assume
that initially the rod was submerged in a meduim where the temperature at each point x of the rod
is described by the function f (x) . We also suppose that the left and the right ends of the rod are in
contact with media which temperatures change with time and are described by the functions g1 (t)
and g2 (t) respectively.

(a) Write down the initial-boundary problem satisfied by the temperature distribution u (x, t) in the
rod at any point x and time t (Explain all the meaning of the variables and parameters
used) . (5 Marks)

(b) Suppose that f, g 1, g2 are bounded, there exist constants m and M such that for all x in the
domain of g1 and g2, and all t ≥ 0, we have

m ≤ f (x) ≤ M; m ≤ g 1 (x) ≤ M; m ≤ g 2 (x) ≤ M;

and the temperature u (x, t) solution of the IBVP described above satisfies the inequalities

m ≤ u (x, t) ≤ M; for all x and t ≥ 0.

Show that the solution u (x, t) of the heat problem described above is unique. (Explain
clearly all the steps (10 Marks)

(c) Suppose that u1 (x, t) and u 2 (x, t) are solutions of the heat problem above (with different
initial and boundary conditions) are such that u1 (0, t) ≤ u 2 (0, t) , u1 (L, t) ≤ u 2 (L, t) , and
u1 (x, 0) ≤ u 2 (x, 0) . Show that u1 (x, t) ≤ u 2 (x, t) for all 0 ≤ x ≤ L and all t ≥ 0. (10 Marks)

[25 Marks]



7

, lOMoARcPSD|18222662




QUESTION 2

Find the displacement u (x, t) of a semi–infinite vibrating string, if the finite end is fixed, the initial
velocity is zero and the initial displacement is xe x at every point x of the string. (Explain all the
details) [25 Marks]


QUESTION 3

When there is heat transfer from the lateral side of an infinite cylinder of radius a into a surround-
ing medium, the temperature inside the rod depends upon the time t and the distance r from its
longitudinal axis (i.e. the axis through the centre and parallel to the lateral side).

(a) Write down the partial differential equation that models this problem. (4 Marks)

(b) Suppose that the surrounding medium is ice (at temperature zero) and the initial temperature
is constant at every point. Derive the initial and boundary conditions.
[Hint : For the boundary condition use Newton’s law of cooling.] (7 Marks)

(c) Solve the initial boundary value problem obtained in (a) and (b). (14 Marks)

[25 Marks]


QUESTION 4

Find the displacement u (r, t) of a circular membrane of radius c clamped along its circumference
if its initial displacement is zero and the circular membrane is given an constant initial velocity v in
the upward direction. [25 Marks]

TOTAL: [100 Marks]




8

,
$2.71
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada

Conoce al vendedor

Seller avatar
Los indicadores de reputación están sujetos a la cantidad de artículos vendidos por una tarifa y las reseñas que ha recibido por esos documentos. Hay tres niveles: Bronce, Plata y Oro. Cuanto mayor reputación, más podrás confiar en la calidad del trabajo del vendedor.
LIBRARYpro University of South Africa (Unisa)
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
10518
Miembro desde
2 año
Número de seguidores
4904
Documentos
4814
Última venta
1 semana hace
LIBRARY

On this page, you find all documents, Package Deals, and Flashcards offered by seller LIBRARYpro (LIBRARY). Knowledge is Power. #You already got my attention!

3.7

1457 reseñas

5
683
4
235
3
243
2
78
1
218

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes