AP Calculus AB Exam Review Questions
and Answers
∫ e^U dU - ANSWER-e^U
∫ dU / U - ANSWER-ln |U|
e^ln x - ANSWER-x
ln e^x - ANSWER-x
ln e - ANSWER-1
ln 1 - ANSWER-0
ln A^B - ANSWER-B ln A
ln (A/B) - ANSWER-ln A - ln B
ln AB - ANSWER-ln A + ln B
d e^U - ANSWER-e^U dU
limit as x approaches 0 in: (sin x)/x - ANSWER-1
limit as x approaches 0 in: (cos (x) - 1)/x - ANSWER-0
Critical Point - ANSWER-Where the derivative = 0
Inflection Point - ANSWER-Where the second derivative = 0
3 Cases of Non-Differentiability - ANSWER-Cusp, discontinuity, slope is undefined
(vertical)
MVT of Derivatives - ANSWER-m = f(b) - f(a) / ( b - a )
MVT of Integrals - ANSWER-1/( b-a ) * ∫ from a to b of f(x)
Trapezoid Rule - ANSWER-1/2 ( b-a / n ) (y + 2y + ... + 2y + y)
d sin x - ANSWER-cos x
d cos x - ANSWER-- sin x
and Answers
∫ e^U dU - ANSWER-e^U
∫ dU / U - ANSWER-ln |U|
e^ln x - ANSWER-x
ln e^x - ANSWER-x
ln e - ANSWER-1
ln 1 - ANSWER-0
ln A^B - ANSWER-B ln A
ln (A/B) - ANSWER-ln A - ln B
ln AB - ANSWER-ln A + ln B
d e^U - ANSWER-e^U dU
limit as x approaches 0 in: (sin x)/x - ANSWER-1
limit as x approaches 0 in: (cos (x) - 1)/x - ANSWER-0
Critical Point - ANSWER-Where the derivative = 0
Inflection Point - ANSWER-Where the second derivative = 0
3 Cases of Non-Differentiability - ANSWER-Cusp, discontinuity, slope is undefined
(vertical)
MVT of Derivatives - ANSWER-m = f(b) - f(a) / ( b - a )
MVT of Integrals - ANSWER-1/( b-a ) * ∫ from a to b of f(x)
Trapezoid Rule - ANSWER-1/2 ( b-a / n ) (y + 2y + ... + 2y + y)
d sin x - ANSWER-cos x
d cos x - ANSWER-- sin x