100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4.2 TrustPilot
logo-home
Examen

Relativity Analytics Cert - 10.3 Conceptual Indexes Pt 1 Exam Questions and Answers 100% Pass

Puntuación
-
Vendido
-
Páginas
16
Grado
A+
Subido en
16-02-2025
Escrito en
2024/2025

Relativity Analytics Cert - 10.3 Conceptual Indexes Pt 1 Exam Questions and Answers 100% Pass Conceptual analytics helps reveal the facts of a case by doing the following: - - Giving users an overview of the document collection through clustering -Helping users find similar documents with a right-click -Allowing users to build example sets of key issues -Running advanced keyword analysis Latent Semantic Indexing (LSI) - A mathematical approach to indexing documents that Conceptual analytics uses Conceptual Index - Uses Latent Semantic Indexing (LSI) to discover concepts between documents. This indexing process is based solely on term co-occurrence. The language, concepts, and relationships are defined entirely by the contents of your documents and learned by the index 2100% Pass Guarantee Olivia West, All Rights Reserved © 2025 Classification Index - Uses coded examples to build a Support Vector Machine (SVM) to predict a document's relevance. This index is used solely by the Active Learning application Language Agnostic - LSI is this, meaning that you can index any language and it learns that language Training Set - LSI enables Relativity Analytics to learn the language and, ultimately, the conceptuality of each document by first processing this set of data Memory - Analytics indexes are always stored in this when being worked with, so response time is very fast. Concept Space - When you create an Analytics index, Relativity uses the training set of documents to build a mathematical model called this Concept rank - This is an indication of the conceptual distance between two items. It may be referred to as a coherence score, rank, or threshold. In each scenario, the number represents the same thing Support Vector Machine learning (SVM) - This is used solely by Active Learning. With this algorithm, you don't need to provide the Analytics index with any training text 3100% Pass Guarantee Olivia West, All Rights Reserved © 2025 Hyperplane - After this is established, all documents without a coding decision are pulled into the model and mapped on either side of it based on the model's current understanding of the difference between relevant and not relevant. Rank - This measures the strength or confidence the model has in a document being relevant or not relevant. It is measured on a scale from 100 to 0 Multiple Indexes - If you want to limit search results to certain document groups or have more than one language in the document set, this might give yo

Mostrar más Leer menos
Institución
Relativity Analytics
Grado
Relativity Analytics










Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Escuela, estudio y materia

Institución
Relativity Analytics
Grado
Relativity Analytics

Información del documento

Subido en
16 de febrero de 2025
Número de páginas
16
Escrito en
2024/2025
Tipo
Examen
Contiene
Preguntas y respuestas

Temas

Vista previa del contenido

Relativity Analytics Cert - 10.3
Conceptual Indexes Pt 1 Exam
Questions and Answers 100% Pass


Conceptual analytics helps reveal the facts of a case by doing the following: - ✔✔-

Giving users an overview of the document collection through clustering


-Helping users find similar documents with a right-click


-Allowing users to build example sets of key issues


-Running advanced keyword analysis


Latent Semantic Indexing (LSI) - ✔✔A mathematical approach to indexing documents

that Conceptual analytics uses


Conceptual Index - ✔✔Uses Latent Semantic Indexing (LSI) to discover concepts

between documents. This indexing process is based solely on term co-occurrence. The

language, concepts, and relationships are defined entirely by the contents of your

documents and learned by the index




100% Pass Guarantee Olivia West, All Rights Reserved © 2025 1

,Classification Index - ✔✔Uses coded examples to build a Support Vector Machine

(SVM) to predict a document's relevance. This index is used solely by the Active

Learning application


Language Agnostic - ✔✔LSI is this, meaning that you can index any language and it

learns that language


Training Set - ✔✔LSI enables Relativity Analytics to learn the language and, ultimately,

the conceptuality of each document by first processing this set of data


Memory - ✔✔Analytics indexes are always stored in this when being worked with, so

response time is very fast.


Concept Space - ✔✔When you create an Analytics index, Relativity uses the training set

of documents to build a mathematical model called this


Concept rank - ✔✔This is an indication of the conceptual distance between two items. It

may be referred to as a coherence score, rank, or threshold. In each scenario, the number

represents the same thing


Support Vector Machine learning (SVM) - ✔✔This is used solely by Active Learning.

With this algorithm, you don't need to provide the Analytics index with any training

text




100% Pass Guarantee Olivia West, All Rights Reserved © 2025 2

, Hyperplane - ✔✔After this is established, all documents without a coding decision are

pulled into the model and mapped on either side of it based on the model's current

understanding of the difference between relevant and not relevant.


Rank - ✔✔This measures the strength or confidence the model has in a document being

relevant or not relevant. It is measured on a scale from 100 to 0


Multiple Indexes - ✔✔If you want to limit search results to certain document groups or

have more than one language in the document set, this might give you better results


-No documents appear in the saved search


-Search contains fields that would cause the index to error - ✔✔These two things can

cause a warning message appears upon clicking Save to create a new Conceptual index


Searchable set - ✔✔This set should include all of the documents on which you want to

perform any Analytics function. Only documents included in this set are returned when

you run clustering, categorization, or any other Analytics feature


Training set - ✔✔The document set from which the Analytics engine learns word

relationships to create the concept index


Remove documents that errored during population = Yes - ✔✔This option removes

documents that received errors during population so that you don't have to manually

remove them from the population table in the database




100% Pass Guarantee Olivia West, All Rights Reserved © 2025 3
$12.49
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada


Documento también disponible en un lote

Conoce al vendedor

Seller avatar
Los indicadores de reputación están sujetos a la cantidad de artículos vendidos por una tarifa y las reseñas que ha recibido por esos documentos. Hay tres niveles: Bronce, Plata y Oro. Cuanto mayor reputación, más podrás confiar en la calidad del trabajo del vendedor.
OliviaWest Teachme2-tutor
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
109
Miembro desde
1 año
Número de seguidores
17
Documentos
8528
Última venta
5 días hace
Pure Orchid Haven.

All Documents,and package deals offered by seller Olivia West.

2.8

22 reseñas

5
6
4
2
3
4
2
1
1
9

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes