100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4.2 TrustPilot
logo-home
Examen

Nuclear Energy, Eighth Edition Solutions to Exercises Raymond L. Murray/ Complete Solved Questions to all chapters, A+ Graded.

Puntuación
4.8
(4)
Vendido
9
Páginas
122
Grado
A+
Subido en
13-02-2025
Escrito en
2024/2025

This is a complete solutions Manual to Nuclear Energy: An Introduction to the Concepts, Systems, and Applications of Nuclear Processes, Eighth Edition [8th Ed]. An Original Complete Updated PDF file, 100% helping you to pass your Exams.

Mostrar más Leer menos
Institución
Grado











Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Escuela, estudio y materia

Institución
Grado

Información del documento

Subido en
13 de febrero de 2025
Número de páginas
122
Escrito en
2024/2025
Tipo
Examen
Contiene
Preguntas y respuestas

Temas

Vista previa del contenido

Nuclear Energy, Eighth Edition

Solutions to Exercises

Raymond L. Murray
North Carolina State University

Keith E. Holbert
Arizona State University
Tempe, AZ 85287-5706



Please do not make these solutions publicly accessible, online or otherwise. The author
welcomes corrections and suggestions for improvements, additions, and deletions. Since
Microsoft deleted the classic Equation Editor in January 2018, the MathType font must be
installed to view some equations correctly, (https://www.dessci.com/en/dl/fonts/getfont.asp).


Chapter 1 – Energy

1.1 m = 75 kg; v = 8 m/s; EK = ½mv2 = (0.5)(75 kg)(8 m/s)2 = 2400 J

1.2 C = (5/9)(F – 32), F = (9/5)C + 32
(a) C = (5/9)(68 °F – 32) = 20 °C
(b) C = (5/9)(500 °F – 32) = 260 °C
(c) F = (9/5)(–273 °C) + 32 = –459.4 °F
(d) F = (9/5)(1000 °C) + 32 = 1832 °F
(e) F = (9/5)(–40 °C) + 32 = –40 °F
(f) C = (5/9)(212 °F – 32) = 100 °C

1.3 cp = 450 J/(kg·°C), m = 0.5 kg, ΔT = 100 °C
Q = m cp ΔT = (0.5 kg)(450 J/(kg·°C))(100 °C) = 22,500 J = 22.5 kJ

1.4 Molecular weight 28, m = (28 amu)(1.66 × 10–27 kg/amu) = 4.65 × 10–26 kg
At 20 °C, E = 6.07 × 10–21 J, from Example 1.3
v  2 E / m  2 (6.07  10 21 J ) (4.65  10 26 kg )  511 m/s

1.5 Conversion factor (Appendix): 1 hp = 745.7 W
P = (200 hp)(745.7 W/hp) = 149,140 W  149 kW
E = (149 kW)(4 h) = 596 kWh

1.6 (a) ν = c/λ = (3.0 × 108 m/s) / (1.5 × 10–12 m) = 2 × 1020 Hz
(b) ν = c/λ = (3.0 × 108 m/s) / (0.10 × 10–9 m) = 3 × 1018 Hz

1.7 (a) m/m0 = 1/[1  (v/c)2]1/2


1

,Nuclear Energy Chapter 21 – Reactor Safety and Security


series expansion: (1 + x)n = 1 + nx + ...
Let n = –1/2, x =  (v/c)2
m/m0 = 1/[1  (v/c)2]1/2  1 + 1/2 (v/c)2
EK = (m  m0)c2 = m0(m/m0  1)c2 = (1/2)m0v2 q.e.d.
(b) m0 = 1000 kg, v = 20 m/s, c = 3 × 108 m/s
Δm = EK /c2  (1/2)(m0)(v/c)2 = (1/2)(1000 kg)[(20 m/s)/(3 × 108 m/s)]2
Δm = 2.22 × 10–12 kg = 2.22 × 10–9 g

1.8 E = (190 × 106 eV)(1.60 × 10–19 J/eV) = 3.04 × 10–11 J

1.9 m = E/c2 = (3.04 × 10–11 J) / (3 × 108 m/s)2 = 3.38 × 10–28 kg

1.10 m = (235 u)(1.66 × 10–27 kg/u) = 3.90 × 10–25 kg
E = mc2 = (3.90 × 10–25 kg)(3 × 108 m/s)2 = 3.51 × 10–8 J

1.11 kilogram fraction: (3.38 × 10–28 kg) / (3.90 × 10–25 kg) = 8.67 × 10–4
joule fraction: (3.04 × 10–11 J) / (3.51 × 10–8 J) = 8.66 × 10–4
MeV fraction: (190 MeV) / [(235)(931.5 MeV)] = 8.68 × 10–4
(differences due to rounding)

1.12 [F (fissions/s)](190 MeV/fission)(1.60 × 10–13 J/MeV) = 1 W
F = (1 J/s)/(3.04 × 10–11 J/fission) = 3.29 × 1010 fissions/s  3.3 × 1010 /s

1.13 (a) E0 = mpc2 = (1.673 × 10–27 kg)(2.998 × 108 m/s)2/(1.602 × 10–13 J/MeV) = 938.6 MeV
(b) E0 = mnc2 = (1.675 × 10–27 kg)(2.998 × 108 m/s)2/(1.602 × 10–13 J/MeV) = 939.8 MeV
These values differ from Table A.2 in a manner proportionate to the number of
significant digits used.

1.14 E = mc2 = (1.6605389 × 10–27 kg)(299792458 m/s)2(1 MeV/1.602176565 × 10–13 J)
= 931.49 MeV

1.15 (a) E = mc2, E0 = m0c2, ΔE = (m  m0)c2
ΔE/E0 = m/m0  1 = [1  (v/c)2]–1/2  1
(1 + ΔE/E0)2 = [1 (v/c)2]–1
(v/c)2 = 1  1/(1 + ΔE/E0)2
v/c = [1  (1 + ΔE/E0)–2]1/2
(b) ΔE/E0 = 0.01, v/c = [1  (1.01)–2]1/2 = 0.140
ΔE/E0 = 0.1, v/c = [1  (1.1)–2]1/2 = 0.417
ΔE/E0 = 1, v/c = [1  (2)–2]1/2 = 0.866

1.16 (a) (34.18 kcal/g)(454 g/lb)/(0.252 kcal/Btu) = 6.16 × 104 Btu/lb
(b) (34.18 kcal/g)(1000 cal/kcal)(4.184 J/cal) = 1.43 ×105 J/g
(c) MH = 2.016 g/mol, molecular weight of H2
NA = 6.022 × 1023 molecules/mol, Avogadro’s number
NA/MH = 2.987 × 1023, number of H2 molecules per gram
H = heat of combustion per molecule


2

,Nuclear Energy Chapter 21 – Reactor Safety and Security


= (1.43 × 105 J/g) / [(1.60 × 10–19 J/eV)(2.987 × 1023 molecules/g)]
H  3.0 eV/molecule

m0 c 2  1 
2 2
1.17 E K  ET E 0  m c m0 c  m0 c 2  m0 c 2  1
1 (v 2 c 2 )  2 2
 1 (v c )  
2
EK 1 v  1 1
1 2
  1    2
 v  c 1 2
m0 c 1 (v 2 c 2 ) c   E K   EK 

1  1 
 2   2 
 m0 c   m0 c 

1.18 Graph of error in using classic rather than relativistic EK equation
Error = [EK(classic) – EK(relat.)] (100%) / EK(relat.)
0
Error Using Classic Expression (%)




-10
-20
-30
-40
-50
-60
-70
-80
-90
-100
0 0.2 0.4 0.6 0.8 1
Fraction of the Speed of Light, v/c


1.A Sampling of ALBERT results:
(a) Electron at 0.5c: Ratio of mass to rest mass is 1.1547
(b) Proton of 1000 MeV total energy: Kinetic energy is 9.8899e-012 J, or 61.728 MeV
(c) Neutron of 0.025 eV kinetic energy: Momentum is 3.663e-024 kg-m/sec
(d) Deuteron with m/m0 = 1.01: Velocity is 42082095.5242 m/sec
(e) Alpha with momentum 10–19 kg·m/s: Relativistic mass is 6.653e-027 kilograms


Chapter 2 – Atoms and Nuclei

2.1 Density of graphite ρC = 1.65 g/cm3, molecular weight MC = 12.011
NC = ρC NA/MC = (1.65 g/cm3)(6.022×1023 atoms/mol)/(12.011 g/mol) = 8.273 × 1022/cm3
(a) NC-12 = γC-12 NC = (0.988922)(8.273 × 1022/cm3) = 8.181 × 1022/cm3
(b) NC-13 = γC-13 NC = (0.011078)(8.273 × 1022/cm3) = 9.165 × 1020/cm3

2.2 N = ρ NA/M = (19.3 g/cm3)(6.022 × 1023 atoms/mol)/(197 g/mol) = 0.0590 × 1024/cm3
Side of cube s such that s3 = 1, so that
s = 1/N1/3 = 1/(59.0 × 1021)1/3 = 2.57 × 10–8 cm
Equal volumes means s3 = (4/3)πr3 or r = [3/(4π)]1/3s


3

, Nuclear Energy Chapter 21 – Reactor Safety and Security


r = (0.620)(2.57 × 10–8 cm) = 1.59 × 10–8cm
V = s3 = (2.57 × 10–8 cm)3 = 1.70 × 10–23 cm3

2kT 2 (1.38  10 23 J/K ) (293 K )
2.3 (a) v p    2200 m/s
mn 1.675  10 27 kg
2kT 2 (1.38  1023 J/K) (500  273K)
(b) v p    3570 m/s
mn 1.675  1027 kg

2.4 Average energy per molecule (3/2)kT
Total energy for N molecules E = (3/2)NkT
Add energy ΔE = (3/2)NkΔT which is also ΔE = cVNmΔT from basic heat concepts,
where cV = specific heat and m = mass of molecule. Equating, (3/2)k = cVm or
cV = (3/2)(k/m) q.e.d.

2.5 For elemental helium, which is almost entirely comprised of He-4:
3k (3)(1.3806  10 23 J/K )
cV    3116 J/(kg·K)
2 m (2)(4.0026 amu)(1.6605  10 27 kg/amu)

2.6 (a) E = h ν = h c / λ = (4.1357×10–15 eV·s)(2.998×108 m/s) / (280×10–9 m) = 4.43 eV
(b) E = h ν = h c / λ = (4.1357×10–15 eV·s)(2.998×108 m/s) / (1.5×10–12 m) = 8.27×105 eV
(c) E = h ν = h c / λ = (4.1357×10–15 eV·s)(2.998×108 m/s) / (0.1×10–9 m) = 1.24×104 eV

2.7 Energy E1 = (13.6 eV)(1.602 × 10–19 J/eV) = 2.18 × 10–18 J
Frequency ν = E/h = (2.18 × 10–18 J) / (6.63 × 10–34 J·s) = 3.29 × 1015 Hz

2.8 E3 = E1 /(3)2 = –13.6/9 = –1.51 eV
R3 = (3)2 R1 = 9 (0.53 × 10–10 m) = 4.77 × 10–10 m = 4.77 × 10–8 cm
ΔE = E3  E1 = –1.5  (–13.6) = (12.1 eV)(1.60 × 10–19 J/eV) = 1.94 × 10–18 J
ν = ΔE/h = (1.94 × 10–18 J) / (6.63 × 10–34 J·s) = 2.92 × 1015 Hz

2.9 Carbon-14: Z = 6, A = 14
Numbers: electrons 6, protons 6, neutrons 8
Electrons in orbits: inner 2, outer 4




4
$17.09
Accede al documento completo:
Comprado por 9 estudiantes

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada

Reseñas de compradores verificados

Se muestran los 4 comentarios
3 meses hace

5 meses hace

5 meses hace

6 meses hace

4.8

4 reseñas

5
3
4
1
3
0
2
0
1
0
Reseñas confiables sobre Stuvia

Todas las reseñas las realizan usuarios reales de Stuvia después de compras verificadas.

Conoce al vendedor

Seller avatar
Los indicadores de reputación están sujetos a la cantidad de artículos vendidos por una tarifa y las reseñas que ha recibido por esos documentos. Hay tres niveles: Bronce, Plata y Oro. Cuanto mayor reputación, más podrás confiar en la calidad del trabajo del vendedor.
Topscorer london
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
107
Miembro desde
5 año
Número de seguidores
12
Documentos
454
Última venta
1 semana hace
Top Scorer

Helping all Students fulfill their educational, career and personal goals.

4.3

23 reseñas

5
15
4
3
3
3
2
0
1
2

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes