100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4,6 TrustPilot
logo-home
Examen

Solutions Manual Foundations of Mathematical Economics By Michael Carter

Puntuación
-
Vendido
-
Páginas
321
Grado
A+
Subido en
12-02-2025
Escrito en
2024/2025

Solutions Manual Foundations of Mathematical Economics By Michael Carter

Institución
Foundations Of Mathematical Economics
Grado
Foundations Of Mathematical Economics











Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Libro relacionado

Escuela, estudio y materia

Institución
Foundations Of Mathematical Economics
Grado
Foundations Of Mathematical Economics

Información del documento

Subido en
12 de febrero de 2025
Número de páginas
321
Escrito en
2024/2025
Tipo
Examen
Contiene
Preguntas y respuestas

Temas

Vista previa del contenido

Solutions ManualM




M Foundations of Mathematical Economics
M M M




Michael Carter
M M

, ⃝ c 2001 Michael Carter
M MM M M




Solutions for Foundations of Mathematical M M M M All rights reserved M M




MEconomics



Chapter 1: Sets and Spaces M M M M




1.1
{1, 3, 5, 7 . . . }or {� ∈ � : � is odd }
M M M M M M M M M M M M M M M M




1.2 Every �∈ � also belongs to �. Every �
∈ � also belongs to �. Hence �, �
M M M M M M M M M M M M M M




Mhaveprecisely the same elements.
M M M M




1.3 Examples of finite sets are M M M M




∙ the letters of the alphabet {A, B, C, . . . , Z }
M M M M M M M M M M M M




∙ the set of consumers in an economy M M M M M M




∙ the set of goods in an economy M M M M M M




∙ the set of players in a M M M M M




M game.Examples of infinite setsM M M M




M are
∙ the real numbers ℜ M M M




∙ the natural numbers � M M M




∙ the set of all possible colors M M M M M




∙ the set of possible prices of copper on the world market
M M M M M M M M M M




∙ the set of possible temperatures of liquid water.
M M M M M M M




1.4 � = {1, 2, 3, 4, 5, 6 }, � = {2, 4, 6 }.
M M M M M M M M M M M M M M M M M




1.5 The player set is � = {Jenny, Chris } . Their action spaces are
M M M M M M M M M M M M M




�� = {Rock, Scissors, Paper }
M M M M M M � = Jenny, Chris
M M M




1.6 The set of players is � ={ 1, 2 , . . ., �} . The strategy space of each player is the
M M M M M M M M M M M M M M M M M M




Mset of feasible outputs
M M M




�� = {�� ∈ ℜ + : �� ≤ �� }
M M M M M M M M M M




where �� is the output of dam �.
M MM MM M M M M




3
1.7 The player set is � = {1, 2, 3}. There are 2 = 8 coalitions, namely
M M M M M M M M M M M M M M M




� (�) = {∅ , {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}
M M M M M M M M M M M M M M M




10
There are 2 M M M coalitions in a ten player game. M M M M M





1.8 Assume that � ∈ (� ∪ �) . That is � ∈/ � ∪ �. This implies � ∈/ � and � ∈/ �, or �∈
M M MM MM MM M M M M MMM MM MM MM MM M M M M MM MM MM MM MM MM MM MM MM M M M M




�� and �∈ ��. Consequently, �∈ �� ∩ ��. Conversely, assume �∈ �� ∩ ��. This implies
M M M M M M M M M M M M M M M M M M M M M M MM M




that � ∈ �� and � ∈ ��. Consequently �∈/ � and �∈/ � and therefore
M MM M M MM MM M M M M MM MM M MM MM MM M MM MM MM




�∈/ � ∪ �. This implies that � ∈ (� ∪ �)�. The other identity is proved similarly.
M M M M M M MM M M M M M M M M M M M M




1.9

�= � M M




�∈�

�=∅ M M




�∈�


1

, ⃝ c 2001 Michael Carter
M MM M M




Solutions for Foundations of Mathematical M M M M All rights reserved M M




MEconomics

�2
1




�1
-1 0 1




-1
2 2
Figure 1.1: The relation {(�, �) : � + � = 1 }M M M M M M M M M M M M M




1.10 The sample space of a single coin toss is{�, � .}The set of possible outcomes
M M M M M M M M M M M M M M M M M




Minthree tosses is the product
M M M M M




{
{�, �} ×{�, �} ×{�, �}= (�, �, �), (�, �, �), (�, �, �),
M M M M M M M M M M M M M M M M M M M M



}
(�, �, �), (�, �, �), (�, �, �), (�, �, �), (�, �, �) M M M M M M M M M M M M M M M M M M




A typical outcome is the sequence (�, �, �) of two heads followed by a tail.
M M M M M M M M M M M M M M M M




1.11

� ∩ℜ+� = {0} M M
M
M




where 0 = (0, 0 , . . . , 0) is the production plan using no inputs and producing no outputs.
M M M M M M M M M M M M M M M M M




To see this, first note that 0 is a feasible production plan. Therefore, 0 ∈ �.
M M M M M M M M M M M M M M M M M




Also, M




0 ∈ ℜ �+ and therefore 0 ∈ � ∩ℜ � .+
M M
M
M M M M M M
M




To show that there is no other feasible production plan in ℜ �
M M
+ , we assume the contrary.
M M M M M M M M M M M M M M M M M M



That is, we assume there is some feasible production plan y ∈ ℜ +
M M M M ∖ { } 0 . This implies M M M M M M M M M M M MM M M M
M MM M M MM M M M M M M M




the existence of a plan producing a positive output with no inputs. This technological
M M M M M M M M M M M M M M




infeasible, so that �∈/ �.
M M M M M M M




1.12 1. Let x ∈ �(�). This implies that (�, − x) ∈ �. Let x′ ≥ x. Then (�, − x′ ) ≤
MM MM M M M MM MM MM MM M M M M MM MM M M M M MM M M




(�, − x) and free disposability implies that (�, − x′ ) ∈ �. Therefore x′ ∈ �(�).
M M M M M MM M M M M M M M M M M




2. Again assume x ∈ �(�). This implies that (�, − x) ∈ �. By free disposal,
M M MM MM M M M M MMMM MM M M M M M M M M M MMMM MM M M




(�′ , − x) ∈ � for every �′ ≤ �, which implies that x ∈ �(�′ ). �(�′ ) ⊇ �(�).
M M M M M M M M M M M M MM M M M M MM M M M M




1.13 The domain of “<” is {1, 2}= � and the range is {2, 3}⫋ �.
M M M M M M M M M M M M M M M M M




1.14 Figure 1.1. M




1.15 The relation “is strictly higher than” is transitive, antisymmetric and
M M M M M M M M M




Masymmetric.It is not complete, reflexive or symmetric. M M M M M M M




2

, ⃝ c 2001 Michael Carter
M MM M M




Solutions for Foundations of Mathematical M M M M All rights reserved M M




MEconomics
1.16 The following table lists their respective properties.
M M M M M M




< ≤√ √= M M




× reflexive
√ √ √
M M



transitive M M




symmetric √ √
×
M M





M M




asymmetric
anti-symmetric √ × ×
√ √ M M
M M




√ √ M M


complete ×
Note that the properties of symmetry and anti-symmetry are not mutually exclusive.
M M M M M M M M M M M




1.17 Let ∼be an equivalence relation of a set �∕ = ∅. That is, the relation∼ is reflexive,
M M M M M M M M M M M M M M M M M




symmetric and transitive. We first show that every �∈ � belongs to some equivalence
M M M M M M M M M M M M M M




class. Let � be any element in � and let
M M ∼ (�) be the class of elements equivalent
M M M M M M M M M M M M M M M




Mto
�, that is
M M




∼(�) ≡{� ∈ � : � ∼ �} M M M M M M M M M M




Since ∼ is reflexive, �∼ �and so �∈ ∼ (�). Every �∈ � belongs to some
M M M M M M M M M M M




Mequivalenceclass and therefore M M M




�= ∼(�) M




�∈�

Next, we show that the equivalence classes are either disjoint or identical,
M M M M M M M M M M M M




that is M M




∼(�) ∕= ∼(�) if and only if f∼(�) ∩∼ (�) = ∅ .
M M M M M M M M M M M




First, assume ∼(�) ∩∼ (�) = ∅ . Then � ∈ ∼ (�) but �∈
M �
/ ∼( M M M M M M M M M M MM ). Therefore ∼(�) ∕= ∼(�).
M M M M




Conversely, assume ∼(�) ∩∼ (�) ∕= ∅ and let � ∈ ∼(�) ∩∼ (�). Then � ∼ � and bysymmetry
MM MM M M MM MM M MM MM MM M M M MM M MM MM M MM MM M




M� ∼ �. Also � ∼ �and so by transitivity � ∼ �. Let � be any element in ∼(�) so
M M MMM M M M M M M M M M M MMM M M M M M MM MM M




that � ∼ �. Again by transitivity � ∼ � and therefore � ∈ ∼(�). Hence
M MM MM M MMM MM MM MM MM M MM MM MM MM M MMM




∼(�) ⊆ ∼ (�). Similar reasoning implies that ∼(�) ⊆ ∼ (�). Therefore ∼(�) = ∼(�).
M M M MM M MM M M M M M M M




We conclude that the equivalence classes partition �.
M M M M M M M




1.18 The set of proper coalitions is not a partition of the set of players, since any
M M M M M M M M M M M M M M M




playercan belong to more than one coalition. For example, player 1 belongs to the
M M M M M M M M M M M M M M M




Mcoalitions
{1}, {1, 2}and so on.
M M M M M




1.19

� ≻� =⇒ � ≿ � and � ∕≿ �
M M M M M M M M M M




� ∼ � =⇒ � ≿ � and � ≿ �
M M M M M M M M M M




Transitivity of ≿ implies �≿ �. We need to show that � ∕≿ �. Assume otherwise, thatis
M M M M M M M M M M M M M M M M M M




Massume � ≿ � This implies � ∼� and by transitivity � ∼�. But this implies that
M M M M M M M M M M M M M M M M M M




� ≿ � which contradicts the assumption that � ≻�. Therefore we conclude that � ∕≿ �
M M M M M M M M M M M M M M M M M




and therefore � ≻�. The other result is proved in similar fashion.
M M M M M M M M M M M M




1.20 asymmetric Assume � ≻�. M M M M




� ≻� =⇒ � ∕≿ � M M M M M M




while

� ≻� =⇒ � ≿ � M M M M M M




Therefore
3
$18.39
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada

Conoce al vendedor

Seller avatar
Los indicadores de reputación están sujetos a la cantidad de artículos vendidos por una tarifa y las reseñas que ha recibido por esos documentos. Hay tres niveles: Bronce, Plata y Oro. Cuanto mayor reputación, más podrás confiar en la calidad del trabajo del vendedor.
Edufiles Howard County Community College
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
107
Miembro desde
1 año
Número de seguidores
11
Documentos
7519
Última venta
1 día hace
EDUFILES STORES

Unlock success with our trusted collection of high-quality exam documents, study guides, and past papers from top universities. Whether you're preparing for midterms, finals, certifications, or professional exams, our expertly curated materials help you study smarter, score higher, and achieve your academic goals faster. Updated regularly and available instantly, our resources are designed to give you the edge you need.

4.9

208 reseñas

5
199
4
2
3
1
2
1
1
5

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes