100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4.2 TrustPilot
logo-home
Notas de lectura

Class notes Lecture 6 Statistics 2/Statistiek 2 (P_BSTATIS_2)

Puntuación
-
Vendido
1
Páginas
7
Subido en
09-02-2025
Escrito en
2023/2024

This document provides a detailed breakdown of model selection procedures, assumptions, and regression diagnostics, focusing on: 1. Model Selection in Regression Analysis ️ Exploratory vs. Explanatory Approaches (Hypothesis-Driven vs. Data-Driven) ️ Backward Elimination, Forward Selection & Stepwise Regression ️ Pitfalls of Automated Model Selection (Cross-Validation & Overfitting) 2. Checking Assumptions in Multiple Regression ️ Random Sampling & Representativeness ️ Linearity, Normality, and Homoscedasticity of Residuals ️ Detecting Violations Using Residual Plots & Distribution Analysis 3. Identifying & Handling Outliers How to Identify Regression Outliers (Studentized Residuals, Leverage, Cook’s Distance) Effect of Outliers on Model Fit & Parameter Estimates (DFBETA, DFFIT) Steps to Remove or Adjust for Influential Observations

Mostrar más Leer menos
Institución
Grado









Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Escuela, estudio y materia

Institución
Estudio
Grado

Información del documento

Subido en
9 de febrero de 2025
Número de páginas
7
Escrito en
2023/2024
Tipo
Notas de lectura
Profesor(es)
Dr. debby ten hove
Contiene
Todas las clases

Temas

Vista previa del contenido

Modelling Procedures and Assumptions for Regression Models


Learning Objectives:
● Describe various model selection procedures for explanatory and exploratory research
● Name common pitfalls of various selection procedures
● Draw conclusions about the assumptions of a (multiple) regression model
● Identify influential observations


(1) Model Selection

We first discuss criteria for selecting a regression model by deciding which of a possibly large
collection of variables to include in the model
→ exploratory approach: ie finding a good set of explanatory variables
→ confirmatory (explanatory) approach: based on theory and hypotheses, to test a theoretical model

Types of model selection procedures:
1. Hypothesis-driven (explanatory) research
2. Exploratory research

3 Rules for Model Selection:
1. Include the relevant variables to make the model useful for theoretical purposes, so you can
address hypotheses posed by the study, with sensible control (and mediating) variables
2. Include enough variables to obtain good predictive power (ie include all effects that
contribute to R2)
3. Keep the model simple, avoiding unnecessary (higher-order) effects
○ Parsimonious principle: entities should not be multiplied beyond necessity

1.1 Explanatory Research

2 Options for Model Selection for Explanatory Research:
1. Model building
○ Start with effect for control variables
○ Add focal (ie main) predictor
○ Add hypothesised interaction-effect
2. Model trimming
○ Start with hypothesised (complete) model
○ If included, test if interaction-effect contributes to R2

Conclusively,
● If the model has interaction-effect, report the effect of the focal predictor at relevant levels of
the moderator (eg M - SD, M, and M + SD)
● If the model doesn't have interaction-effect, test and interpret the effect (b) of your focal
predictor

, 1.2 Exploratory Research

Model Selection for Exploratory Research
1. Identify relevant processes
2. Search for accurate predictions in practice
3. After explanatory research: what other factors play a role in this phenomena?

→ automated model selection is useful: 3 options of model selection
1. Backward elimination
○ Start with model with all predictor variables
○ Repeatedly remove variable that contributes least to R2
○ Stop if all included predictors have a significant (partial) effect on y (given
pre-determined a-level)
2. Forward selection
○ Start with a model without predictors
○ Repeatedly add variable that contribute most to R2
○ Stop when none of the remaining variables contributes significantly to the
predictive power of the model (given pre-determined a-level)
3. Stepwise regression
→ combination of backward and forward
○ Start with a model without predictors
○ Repeatedly add variables that contribute most to R2
○ In-between, remove variables that lost their (partial) explanatory power
(given pre-determined a-level)
○ Stop if none of the remaining variables contribute significantly to the
predictive power of the model (given pre-determined a-level)

Pitfalls of Automated Model Selection:
● These procedures do not always yield meaningful models (eg interaction-effect without main
effect)
● R2 in the sample ≠ R2 in the population
2 s 2 y −s2 s 2 y −MSE MSR
○ Alternative measure for R : R
2
adj = 2
= 2
=
s y s y s2 y
→ Corrects for the number of predictors in the model, and can decrease when we
add
Predictors
● Chance capitalisation: drawing a conclusion from data wholly or partly biassed in a particular
direction by chance
○ Use cross-validation to test predictive power outside the sample
$4.19
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada


Documento también disponible en un lote

Conoce al vendedor

Seller avatar
Los indicadores de reputación están sujetos a la cantidad de artículos vendidos por una tarifa y las reseñas que ha recibido por esos documentos. Hay tres niveles: Bronce, Plata y Oro. Cuanto mayor reputación, más podrás confiar en la calidad del trabajo del vendedor.
kendt Vrije Universiteit Amsterdam
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
24
Miembro desde
3 año
Número de seguidores
0
Documentos
58
Última venta
1 mes hace
kentaq

Hello! I’m selling all my psychology (and more) notes and assignments from first, second, and third year. I’ve averaged an 8 throughout my studies, so I hope these notes will help you too. I also took the Emotion, Cognition & Behaviour pre-minor and a minor in Peace & Conflict Studies so I have notes for those too!

2.5

2 reseñas

5
0
4
1
3
0
2
0
1
1

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes