100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4,6 TrustPilot
logo-home
Examen

Instructor's Solution Manual for Elementary Statistics: Picturing the World 7th Edition by Ron Larson, Chapter 1-11 | All Chapters

Puntuación
-
Vendido
-
Páginas
202
Grado
A+
Subido en
08-02-2025
Escrito en
2024/2025

Instructor's Solution Manual for Elementary Statistics: Picturing the World 7th Edition by Ron Larson, Chapter 1-11 | All ChaptersInstructor's Solution Manual for Elementary Statistics: Picturing the World 7th Edition by Ron Larson, Chapter 1-11 | All Chapters

Mostrar más Leer menos
Institución
Elementary Statistics, 7th Edition
Grado
Elementary Statistics, 7th Edition











Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Escuela, estudio y materia

Institución
Elementary Statistics, 7th Edition
Grado
Elementary Statistics, 7th Edition

Información del documento

Subido en
8 de febrero de 2025
Número de páginas
202
Escrito en
2024/2025
Tipo
Examen
Contiene
Preguntas y respuestas

Temas

Vista previa del contenido

SOLUTION MANUALt




Linear Algebra and Optimization for Machine Learning
t t t t t t




1st Edition by Charu Aggarwal. Chapters 1 – 11
t t t t tt t t t

,Contents


1 Linear Algebra and Optimization: An Introduction
t t t t t 1


2 Linear Transformations and Linear Systems
t t t t 17


3 Diagonalizable Matrices and Eigenvectors
t t t 35


4 Optimization Basics: A Machine Learning View
t t t t t 47


5 Optimization Challenges and Advanced Solutions
t t t t 57


6 Lagrangian Relaxation and Duality
t t t 63


7 Singular Value Decomposition
t t 71


8 Matrix Factorization
t 81


9 The Linear Algebra of Similarity
t t t t 89


10 The Linear Algebra of Graphs
t t t t 95


11 Optimization in Computational Graphs
t t t 101

,Chapter 1 t




Linear Algebra and Optimization: An Introduction
t t t t t




1. For any two vectors x and y, which are each of length a, show that (i)
t t t t t t t t t t t t t t t



tx − y is orthogonal to x + y, and (ii) the dot product of x − 3y and x + 3y is
t t t t t t t t t t t t t t t t t t t t t t



negative.
t



(i) The first is simply
t · −x x y y using the distributive property of matrix
t t t t t t t t t t t t t t



multiplication. The dot
t
· product of a vector with itself is its squared length. t
t
t t t t t t t t t t t



Since both vectors are of the same length, it follows that the result is 0. (ii)
t t t t t t t t t t t t t t t t



In the second case, one can use a similar argument to show that the result
t t t t t t t t t t t t t t t



is a2 − 9a2, which is negative.
t t t t t t t




2. Consider a situation in which you have three matrices A, B, and C, of sizes
t t t t t t t t t t t t t t



10 × 2, 2 × 10, and 10 × 10, respectively.
t t t t t t t t t t t




(a) Suppose you had to compute the matrix product ABC. From an efficiency t t t t t t t t t t t



per- spective, would it computationally make more sense to compute (AB)C or
t t t t t t t t t t t t



would it make more sense to compute A(BC)?
t t t t t t t t




(b) If you had to compute the matrix product CAB, would it make more sense
t t t t t t t t t t t t t



to compute (CA)B or C(AB)?
t t t t t




The main point is to keep the size of the intermediate matrix as small as
t t t t t t t t t t t t t t



possible in order to reduce both computational and space
t t t t t t t t t



requirements. In the case of ABC, it makes sense to compute BC first. In
t t t t t t t t t t t t t t



the case of CAB it makes sense to compute CA first. This type of
t t t t t t t t t t t t t t



associativity property is used frequently in machine learning in order to
t t t t t t t t t t t



reduce computational requirements.
t t t




3. Show that if a matrix A satisfies A = AT, then all the diagonal
t t t t t t t t t t t t t



elements of the matrix are 0.
t t t t t t




Note that A + AT = 0. However, this matrix also contains twice the
t t t t t t t t t t t t t



diagonal elements of A on its diagonal. Therefore, the diagonal
t t t t t t t t t t



elements of A must be 0.
t t t t t t




4. Show that if we have a matrix satisfying A =
t AT, then for any column t t t t t t t t t t t t t



vector x, we have xT Ax = 0.
t t t t t t t t




Note that the transpose of the scalar xT Ax remains unchanged. Therefore,
t t t t t t t t t t t


1

, t we have
t




xTAx = (xTAx)T = xTATx = −xTAx. Therefore, we have 2xTAx = 0.
t t t t t t t t t t t t t t t t t t




2
$18.49
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada

Conoce al vendedor

Seller avatar
Los indicadores de reputación están sujetos a la cantidad de artículos vendidos por una tarifa y las reseñas que ha recibido por esos documentos. Hay tres niveles: Bronce, Plata y Oro. Cuanto mayor reputación, más podrás confiar en la calidad del trabajo del vendedor.
Edufiles Howard County Community College
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
107
Miembro desde
1 año
Número de seguidores
11
Documentos
7519
Última venta
14 horas hace
EDUFILES STORES

Unlock success with our trusted collection of high-quality exam documents, study guides, and past papers from top universities. Whether you're preparing for midterms, finals, certifications, or professional exams, our expertly curated materials help you study smarter, score higher, and achieve your academic goals faster. Updated regularly and available instantly, our resources are designed to give you the edge you need.

4.9

208 reseñas

5
199
4
2
3
1
2
1
1
5

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes