100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4.2 TrustPilot
logo-home
Examen

SOLUTION MANUAL First Course in Abstract Algebra A 8th Edition by John B. Fraleigh All Chapters Full Complete

Puntuación
-
Vendido
-
Páginas
368
Grado
A+
Subido en
06-02-2025
Escrito en
2024/2025

SOLUTION MANUAL First Course in Abstract Algebra A 8th Edition by John B. Fraleigh All Chapters Full Complete CONTENTS 0. Sets and Relations 1 I. Groups and Subgroups 1. Introduction and Examples 4 2. Binary Operations 7 3. Isomorphic Binary Structures 9 4. Groups 13 5. Subgroups 17 6. Cyclic Groups 21 7. Generators and Cayley Digraphs 24 II. Permutations, Cosets, and Direct Products 8. Groups of Permutations 26 9. Orbits, Cycles, and the Alternating Groups 30 10. Cosets and the Theorem of Lagrange 34 11. Direct Products and Finitely Generated Abelian Groups 37 12. Plane Isometries 42 III. Homomorphisms and Factor Groups 13. Homomorphisms 44 14. Factor Groups 49 15. Factor-Group Computations and Simple Groups 53 16. Group Action on a Set 58 17. Applications of G-Sets to Counting 61 IV. Rings and Fields 18. Rings and Fields 63 19. Integral Domains 68 20. Fermat’s and Euler’s Theorems 72 21. The Field of Quotients of an Integral Domain 74 22. Rings of Polynomials 76 23. Factorization of Polynomials over a Field 79 24. Noncommutative Examples 85 25. Ordered Rings and Fields 87 V. Ideals and Factor Rings 26. Homomorphisms and Factor Rings 89 27. Prime and Maximal Ideals 94 28. Gro¨bner Bases for Ideals 99 VI. Extension Fields 29. Introduction to Extension Fields 103 30. Vector Spaces 107 31. Algebraic Extensions 111 32. Geometric Constructions 115 33. Finite Fields 116 VII. Advanced Group Theory 34. Isomorphism Theorems 117 35. Series of Groups 119 36. Sylow Theorems 122 37. Applications of the Sylow Theory 124 38. Free Abelian Groups 128 39. Free Groups 130 40. Group Presentations 133 VIII. Groups in Topology 41. Simplicial Complexes and Homology Groups 136 42. Computations of Homology Groups 138 43. More Homology Computations and Applications 140 44. Homological Algebra 144 IX. Factorization 45. Unique Factorization Domains 148 46. Euclidean Domains 151 47. Gaussian Integers and Multiplicative Norms 154 X. Automorphisms and Galois Theory 48. Automorphisms of Fields 159 49. The Isomorphism Extension Theorem 164 50. Splitting Fields 165 51. Separable Extensions 167 52. Totally Inseparable Extensions 171 53. Galois Theory 173 54. Illustrations of Galois Theory 176 55. Cyclotomic Extensions 183 56. Insolvability of the Quintic 185 APPENDIX Matrix Algebra 187 iv 2 → − 0. Sets and Relations 1 0. Sets and Relations 1. { √ 3, − √ 3} 2. The set is empty. 3. {1, −1, 2, −2, 3, −3, 4, −4, 5, −5, 6, −6, 10, −10, 12, −12, 15, −15, 20, −20, 30, −30, 60, −60} 4. {−10, −9, −8, −7, −6, −5, −4, −3, −2, −1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11} 5. It is not a well-defined set. (Some may argue that no element of Z + is large, because every element exceeds only a finite number of other elements but is exceeded by an infinite number of other elements. Such people might claim the answer should be ∅.) 6. ∅ 7. The set is ∅ because 3 3 = 27 and 4 3 = 64. 8. It is not a well-defined set. 9. Q 10. The set containing all numbers that are (positive, negative, or zero) integer multiples of 1, 1/2, or 1/3. 11. {(a, 1), (a, 2), (a, c), (b, 1), (b, 2), (b, c), (c, 1), (c, 2), (c, c)} 12. a. It is a function. It is not one-to-one since there are two pairs with second member 4. It is not onto B because there is no pair with second member 2. b. (Same answer as Part(a).) c. It is not a function because there are two pairs with first member 1. d. It is a function. It is one-to-one. It is onto B because every element of B appears as second member of some pair. e. It is a function. It is not one-to-one because there are two pairs with second member 6. It is not onto B because there is no pair with second member 2. f. It is not a function because there are two pairs with first member 2. 13. Draw the line through P and x, and let y be its point of intersection with the line segment CD. 14. a. φ : [0, 1] → [0, 2] where φ(x) = 2x b. φ : [1, 3] → [5, 25] where φ(x) = 5 + 10(x − 1) c. φ : [a, b] [c, d] where φ(x) = c + d−c (x a) b−a 15. Let φ : S → R be defined by φ(x) = tan(π(x − 1 )). 16. a. ∅; cardinality 1 b. ∅,{a}; cardinality 2 c. ∅,{a},{b},{a, b}; cardinality 4 d. ∅,{a},{b},{c},{a, b},{a, c},{b, c},{a, b, c}; cardinality 8 17. Conjecture: |P(A)| = 2 s = 2|A| . Proof The number of subsets of a set A depends only on the cardinality of A, not on what the elements of A actually are. Suppose B = {1, 2, 3,· · · ,s − 1} and A = {1, 2, 3, ,s}. Then A has all the elements of B plus the one additional element s. All subsets of B are also subsets of A; these are precisely the subsets of A that do not contain s, so the number of subsets of A not containing s is |P(B)|. Any other subset of A must contain s, and removal of the s would produce a subset of B. Thus the number of subsets of A containing s is also |P(B)|. Because every subset of A either contains s or does not contain s (but not both), we see that the number of subsets of A is 2|P(B)|

Mostrar más Leer menos
Institución
Abstract Algebra
Grado
Abstract Algebra











Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Libro relacionado

Escuela, estudio y materia

Institución
Abstract Algebra
Grado
Abstract Algebra

Información del documento

Subido en
6 de febrero de 2025
Número de páginas
368
Escrito en
2024/2025
Tipo
Examen
Contiene
Preguntas y respuestas

Temas

Vista previa del contenido

SOLUTION MANUAL
First Course in Abstract Algebra A
8th Edition by John B. Fraleigh
All Chapters Full Complete

, CONTENTS
0. Sets and Relations 1

I. Groups and Subgroups
1. Introduction and Examples 4
2. Binary Operations 7
3. Isomorphic Binary Structures 9
4. Groups 13
5. Subgroups 17
6. Cyclic Groups 21
7. Generators and Cayley Digraphs 24

II. Permutations, Cosets, and Direct Products
8. Groups of Permutations 26
9. Orbits, Cycles, and the Alternating Groups 30
10. Cosets and the Theorem of Lagrange 34
11. Direct Products and Finitely Generated Abelian Groups 37
12. Plane Isometries 42

III. Homomorphisms and Factor Groups
13. Homomorphisms 44
14. Factor Groups 49
15. Factor-Group Computations and Simple Groups 53
16. Group Action on a Set 58
17. Applications of G-Sets to Counting 61

IV. Rings and Fields
18. Rings and Fields 63
19. Integral Domains 68
20. Fermat’s and Euler’s Theorems 72
21. The Field of Quotients of an Integral Domain 74
22. Rings of Polynomials 76
23. Factorization of Polynomials over a Field 79
24. Noncommutative Examples 85
25. Ordered Rings and Fields 87

V. Ideals and Factor Rings
26. Homomorphisms and Factor Rings 89
27. Prime and Maximal Ideals 94
28. Gröbner Bases for Ideals 99

, VI. Extension Fields

29. Introduction to Extension Fields 103
30. Vector Spaces 107
31. Algebraic Extensions 111
32. Geometric Constructions 115
33. Finite Fields 116

VII. Advanced Group Theory

34. Isomorphism Theorems 117
35. Series of Groups 119
36. Sylow Theorems 122
37. Applications of the Sylow Theory 124
38. Free Abelian Groups 128
39. Free Groups 130
40. Group Presentations 133

VIII. Groups in Topology

41. Simplicial Complexes and Homology Groups 136
42. Computations of Homology Groups 138
43. More Homology Computations and Applications 140
44. Homological Algebra 144

IX. Factorization
45. Unique Factorization Domains 148
46. Euclidean Domains 151
47. Gaussian Integers and Multiplicative Norms 154

X. Automorphisms and Galois Theory
48. Automorphisms of Fields 159
49. The Isomorphism Extension Theorem 164
50. Splitting Fields 165
51. Separable Extensions 167
52. Totally Inseparable Extensions 171
53. Galois Theory 173
54. Illustrations of Galois Theory 176
55. Cyclotomic Extensions 183
56. Insolvability of the Quintic 185

APPENDIX Matrix Algebra 187


iv

, 0. Sets and Relations 1

0. Sets and Relations
√ √
1. { 3, − 3} 2. The set is empty.

3. {1, −1, 2, −2, 3, −3, 4, −4, 5, −5, 6, −6, 10, −10, 12, −12, 15, −15, 20, −20, 30, −30,
60, −60}

4. {−10, −9, −8, −7, −6, −5, −4, −3, −2, −1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11}

5. It is not a well-defined set. (Some may argue that no element of Z+ is large, because every element
exceeds only a finite number of other elements but is exceeded by an infinite number of other elements.
Such people might claim the answer should be ∅.)

6. ∅ 7. The set is ∅ because 33 = 27 and 43 = 64.

8. It is not a well-defined set. 9. Q

10. The set containing all numbers that are (positive, negative, or zero) integer multiples of 1, 1/2, or
1/3.

11. {(a, 1), (a, 2), (a, c), (b, 1), (b, 2), (b, c), (c, 1), (c, 2), (c, c)}

12. a. It is a function. It is not one-to-one since there are two pairs with second member 4. It is not onto
B because there is no pair with second member 2.
b. (Same answer as Part(a).)
c. It is not a function because there are two pairs with first member 1.
d. It is a function. It is one-to-one. It is onto B because every element of B appears as second
member of some pair.
e. It is a function. It is not one-to-one because there are two pairs with second member 6. It is not
onto B because there is no pair with second member 2.
f. It is not a function because there are two pairs with first member 2.

13. Draw the line through P and x, and let y be its point of intersection with the line segment CD.

14. a. φ : [0, 1] → [0, 2] where φ(x) = 2x b. φ : [1, 3] → [5, 25] where φ(x) = 5 + 10(x − 1)
c. φ : [a, b] → [c, d] where φ(x) = c + d−c
(x − a)
b−a

15. Let φ : S → R be defined by φ(x) = tan(π(x − 1 )).
2

16. a. ∅; cardinality 1 b. ∅, {a}; cardinality 2 c. ∅, {a}, {b}, {a, b}; cardinality 4
d. ∅, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c}; cardinality 8

17. Conjecture: |P(A)| = 2s = 2|A|.
Proof The number of subsets of a set A depends only on the cardinality of A, not on what the
elements of A actually are. Suppose B = {1, 2, 3, · · · , s − 1} and A = {1, 2, 3, , s}. Then A has all
the elements of B plus the one additional element s. All subsets of B are also subsets of A; these
are precisely the subsets of A that do not contain s, so the number of subsets of A not containing
s is |P(B)|. Any other subset of A must contain s, and removal of the s would produce a subset of
B. Thus the number of subsets of A containing s is also |P(B)|. Because every subset of A either
contains s or does not contain s (but not both), we see that the number of subsets of A is 2|P(B)|.
$17.49
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada

Conoce al vendedor

Seller avatar
Los indicadores de reputación están sujetos a la cantidad de artículos vendidos por una tarifa y las reseñas que ha recibido por esos documentos. Hay tres niveles: Bronce, Plata y Oro. Cuanto mayor reputación, más podrás confiar en la calidad del trabajo del vendedor.
NurseCelestine Chamberlain College Of Nursing
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
103
Miembro desde
1 año
Número de seguidores
27
Documentos
4794
Última venta
2 días hace
Nurse Celestine Study Hub

Welcome! I’m Nurse Celestine, your go-to source for nursing test banks, solution manuals, and exam prep materials. My uploads cover trusted textbooks from top nursing programs — perfect for NCLEX prep, pharmacology, anatomy, and clinical courses. Study smarter, not harder!

4.4

311 reseñas

5
202
4
40
3
57
2
5
1
7

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes