100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4.2 TrustPilot
logo-home
Examen

Solution Manual for Game Theory Basics 1st Edition By Bernhar vodn Stengel, ISBN: 9781108843300, All 12 Chapters Covered

Puntuación
5.0
(1)
Vendido
-
Páginas
67
Grado
A+
Subido en
04-02-2025
Escrito en
2024/2025

Solution Manual for Game Theory Basics 1st Edition By Bernhard von Stengel, ISBN: 9781108843300, All 12 Chapters Covered, Verified Latest Edition Solution Manual for Game Theory Basics 1st Edition By Bernhard von Stengel, ISBN: 9781108843300, All 12 Chapters Covered, Verified Latest Edition Test bank and solution manual pdf free download Test bank and solution manual pdf Test bank and solution manual pdf download Test bank and solution manual free download Test Bank solutions Test Bank Nursing Test Bank PDF Test bank questions and answers

Mostrar más Leer menos
Institución
Game Theory Basics By Bernhard Von Stengel
Grado
Game Theory Basics By Bernhard Von Stengel











Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Libro relacionado

Escuela, estudio y materia

Institución
Game Theory Basics By Bernhard Von Stengel
Grado
Game Theory Basics By Bernhard Von Stengel

Información del documento

Subido en
4 de febrero de 2025
Número de páginas
67
Escrito en
2024/2025
Tipo
Examen
Contiene
Preguntas y respuestas

Temas

Vista previa del contenido

SOLUTIONMANUAL b




GameTheoryBasics1stEdition
b b b b b




ByBernhardvonStengel. Chapters1-12
b b b bb b b b




1

,TABLE OF CONTENTS b b b




1 - Nim and Combinatorial Games
b b b b b




2 - Congestion Games
b b b




3 - Games in Strategic Form
b b b b b




4 - Game Trees with Perfect Information
b b b b b b




5 - Expected Utility
b b b




6 - Mixed Equilibrium
b b b




7 - Brouwer’s Fixed-Point Theorem
b b b b




8 - Zero-Sum Games
b b b




9 - Geometry of Equilibria in Bimatrix Games
b b b b b b b




10 - Game Trees with Imperfect Information
b b b b b b




11 - Bargaining
b b




12 - Correlated Equilibrium
b b b




2

,Game Theory Basics b b




Solutions to Exercises b b




© Bernhard von Stengel 2022
b b b b




SolutiontoExercise1.1 b b b




(a) Let ≤ be defined by (1.7). To show that ≤ is transitive, consider x, y, z with x ≤ y and y ≤ z. If x = y then x ≤ z,
b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b




and if y = z then also x ≤ z. So the only case left is x < y and y < z, which implies x < z because <is transitive,
b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b




and hence x ≤ z.
b b b b b




Clearly, ≤isreflexivebecause x = xandtherefore x ≤x. b b b b b b b b b b b b




To show that is antisymmetric,
≤ b consider x and y with x y and y x. If we had
≤ x ≠ y then≤
x < y and y < x, and
b bb bb b b b b b b b b b b b b b b b bb b b b b b b b b b b b b b b b b b b




by transitivity x < x which contradicts (1.38). Hence x = y, as required. This shows that ≤ is a partial
b b b b b b b b b b b b b b b b b b b b b




order.
b




Finally, we show (1.6), so we have to show that x < y implies x y and x ≠ y and vice≤versa. Let x < y, which
b b b b b b b b b b b b b b b b b b b b b b b b b b b b b




b implies x y by (1.7). If we had x = y then x < x, contradicting
≤ (1.38), so we also have x ≠ y. Conversely, x
b b b b b b b b b b b b b b b b b b b b b b b b b b b




b yandx ≠ yimplyby(1.7)x < y or x = y where the second case is excluded,≤hence x < y, as required.
b b b b b b b b b b b b b b b b b b b b b b b b b b




(b) Consider a partial order and assume ≤ (1.6) as a definition of <. To show that < is transitive, suppose x < b b b b b b b b b b b b b b b b b b b b




y, that is, x y and x ≠ y, and y < z, that is, y z and≤y ≠ z. Because is transitive, x z. If we had x =≤z then x y and y x
b b b b b b b b b b b b b b b b b b b b b b bbb b b b bb b b b b b b b b b b bb b b b b b bb b b b




and hence≤x = y by antisymmetry
b



≤ of , which contradicts x ≠ y, so≤we have x z≤and x ≠ z, that is,x < z by
b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b




(1.6), as required.
≤ ≤
b b b




Also, < is irreflexive, because x < x would by definition mean x x and x ≠ x, but the≤
b b latter is not true.
b b b b b b b b b b bb b b b b b b b b b b b




Finally, we show (1.7), so we have to show that x ≤ y implies x < y or x = y and vice versa, given that < is
b b b b b b b b b b b b b b b b b b b b b b b b b b b




b defined by (1.6). Let x ≤ y. Then if x = y, we are done, otherwise x ≠ y and then by definition x < y. Hence, x
b b b b b b b b b b b b b b b b b b b b b b b b b b b




b ≤ y implies x < y or x = y. Conversely, suppose x < y or x = y. If x < y then x ≤ y by (1.6), and if x = y
b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b




b then x ≤ y because ≤is reflexive. This completes the proof.
b b b b b b b b b b b




SolutiontoExercise1.2 b b b




(a) In analysing the games of three Nim heaps where one heap has size one, we first look at some
b b b b b b b b b b b b b b b b b b




examples, and then use mathematical induction to prove what we conjecture to be the losing positions. A
b b b b b b b b b b b b b b b b b




losing position is one where every move is to a winning position, because then the opponent will win.
b b b b b b b b b b b b b b b b b b




The point of this exercise is to formulate a precise statement to be proved, and then to prove it.
b b b b b b b b b b b b b b b b b b b




First, if there are only two heaps recall that they are losing if and only if the heaps are of equal size. If
b b b b b b b b b b b b b b b b b b b b b b




they are of unequal size, then the winning move is to reduce the larger heap so that both heaps have
b b b b b b b b b b b b b b b b b b b b




equal size.
b b




3

, Consider three heaps of sizes 1, m, n, where 1 m n. We≤ observe ≤ the following: 1, 1, m is winning, by b b b b b b b b b b b b b b b b b b b b b b b b b b b b b




b moving to 1, 1, 0. Similarly, 1, m, m is winning, by moving to 0, m, m. Next, 1, 2, 3 is losing (observed
b b b b b b b b b b b b b b b b b b b b b b b




b earlier in the lecture), and hence 1, 2, n for n 4 is winning. 1, 3, n is winning for any n 3 by moving to 1, 3,
b b b b b b b b b b b b b b b b b b b b b b b b b b b




2. For 1, 4, 5, reducing any heap produces a winning position, so this is losing.
≥ ≥
b b b b b b b b b b b b b b b b




The general pattern for the losing positions thus seems to be: 1, m, m 1, for even numbers
b

+ m. This b b b b b b b b b b b b b b b b b b




includes also the case m = 0, which we can take as the base case for an induction. We now proceed to
b b b b b b b b b b b b b b b b b b b b b b




prove this formally.
b b b




First we show that if the positions of the form 1, m, n with m n are losing when
b

≤ m is even and n = m 1,
b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b




b then these are the only losing
+ positions because any
b other position 1, m, n with m n is winning. b b b b b b b b b b b b b b b b b b




b Namely, if m = n then a winning
≤ move from1, m, m is to 0, m, m, so we can assume m < n. If m is even then b b b b b b b b b b b b b b b b b b b b b b b b b b b b b




n>m 1 (otherwise we would be in the position 1, m, m 1) and so the winning move is to 1, m, m
+
b b b b b b b b b b b b b b b b b b b b b b b b b b b b




1. If m is odd then the winning move is to 1, m, m 1, the same as position 1, m 1, m (this would also be a
+ +
b b b b b b b b b b b b b b b b b b b b b b b b b b b b




winning move from 1,m,m so there the winning move is not unique).
– −
b b b b b b b b b b b b b b




Second, we show that any move from 1, m, m + 1 with even m is to a winning position, using as inductive
b b b b b b b b b b b b b b b b b b b b b b




b hypothesis that 1, mJ, mJ + 1 for even mJ and mJ < m is a losing position. The move to 0, m, m + 1 produces b b b b b b b b b b b b b b b b b b b b b b b b b b




b a winning position with counter-move to 0, m, m. A move to 1, mJ, m + 1 for mJ < m is to a winning position
b b b b b b b b b b b b b b b b b b b b b b b b b




b with the counter-move to 1, mJ, mJ + 1 if mJ is even and to 1, mJ, mJ − 1 if mJ is odd. A move to 1, m, m is to a
b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b




b winning position with counter-move to 0, m, m. A move to 1, m, mJ with mJ < m is also to a winning b b b b b b b b b b b b b b b b b b b b b b




b position with the counter-move to 1, mJ − 1, mJ if mJ is odd, and to 1, mJ 1, mJ if mJ is even (in which case mJ
b b b b b b b b b b b b b b b b b b b b b b b b b b b




b 1 < m because m is even). This concludes theinduction proof.
b b b b b b b b b b b




This result is in agreement with the theorem on Nim heap sizes represented as sums of powers of 2: 1
b b b b b b b b b b b b b b b b b b b b




m n islosing∗ifa+∗ ndonly 0
b

+if, exceptfor2 , thepowersof2makingupm and
+∗ b b

+n come in pairs. So these must be
b b b b b b b b b b b b b b b b b b b b b b b b b




0
b




b the same powers of 2, except for 1 = 2 , which occurs in only m or n, where we have assumed that n is the
b b b b b b b b b b b b b b b b b b b b b b b b




b larger number, so 1 appearsin the representation of n: We have m = 2a 2b 2c for a > b > c >
b b b b b b b b b b b b b b
bbb bb b b bb b b b



b b b b b b b b b b b b b




1,so m is even, and, with the same a,b,c,..., n = 2a 2b 2c 1 = m 1. Then
+ + + ··· ··· ≥
b b b b b b



b b b b b b b b b b b b b b b b b b b b bbb b b




1 m n
∗ + ∗ + ∗ ≡∗0. The following is an example using the bit representation where
b b b b b b




+ + + ··· + +
bbbbb b b bb b b b b bb b b b b b b b b b b b b

b b b b




m =12(whichdeterminesthe bitpattern1100,whichof course dependson m):
b b b b




b b b b b b b b b b b b b b




1 = 0001
12 = 1100
13 = 1101
Nim-sum 0 = 0000

(b) We use (a). Clearly, 1, 2, 3 is losing as shown in (1.2), and because the Nim-sum of the binary
b b b b b b b b b b b b b b b b b b b




representations 01, 10, 11 is 00. Examples show that any other position is winning. The three
b b b b b b b b b b b b b b b b




numbers are n, n 1, n 2. If n is even then reducing
b




+ the
+ heap of size n 2 to 1 creates the position n, n 1, b b b b b b b b b b b b b b b b b b b b b b b b b b b




1 which is losing as shown in (a). If n is odd, then n 1 is even and n 2 = n 1 1 so by the same argument,
+ +
b b b b b b b b b b b b b b b b b b b bb b b b bb b bbb b b b b b




a winning move is to reduce the Nim heap of size n to 1 (which only works if n > 1).
+ + ( + )
b b b b b b b b b b b b b b b b b b b b b




b b




+ b




4
$16.99
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada


Documento también disponible en un lote

Reseñas de compradores verificados

Se muestran los comentarios
6 meses hace

5.0

1 reseñas

5
1
4
0
3
0
2
0
1
0
Reseñas confiables sobre Stuvia

Todas las reseñas las realizan usuarios reales de Stuvia después de compras verificadas.

Conoce al vendedor

Seller avatar
Los indicadores de reputación están sujetos a la cantidad de artículos vendidos por una tarifa y las reseñas que ha recibido por esos documentos. Hay tres niveles: Bronce, Plata y Oro. Cuanto mayor reputación, más podrás confiar en la calidad del trabajo del vendedor.
nursecare Chamberlain College Of Nursing
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
118
Miembro desde
1 año
Número de seguidores
4
Documentos
1171
Última venta
1 semana hace
NURSECARE PLUG

NURSING EXAMS AND STUDY GUIDES(Verified learners) Here, you will find everything you need in NURSING EXAMS AND TESTBANKS.Contact us, to fetch it for you in minutes if we do not have it in this shop.BUY WITHOUT DOUBT!!!!Always leave a review after purchasing any document so as to make sure our customers are 100% satisfied.

4.9

202 reseñas

5
194
4
2
3
2
2
0
1
4

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes