100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4,6 TrustPilot
logo-home
Otro

Question and Answers on Machine Learning

Puntuación
-
Vendido
-
Páginas
8
Subido en
01-02-2025
Escrito en
2024/2025

This document provides questions and answers on Machine Learning, covering key topics such as supervised and unsupervised learning, deep learning, and various machine learning algorithms (e.g., classification, regression, clustering). It also includes model evaluation techniques and real-world machine learning applications in areas like healthcare, finance, and marketing.

Mostrar más Leer menos
Institución
Grado

Vista previa del contenido

Question and Answers on Machine Learning
Here is a collection of frequently asked questions (FAQs) on Machine Learning
(ML) that will help students better understand the key concepts, algorithms, and
applications of this field.



1. What is Machine Learning?

Answer:
Machine Learning (ML) is a subset of Artificial Intelligence (AI) that enables
computers to learn from data and improve their performance without explicit
programming. It involves algorithms that can recognize patterns in data, make
decisions, and adapt over time based on experience.



2. What are the Types of Machine Learning?

Answer:
Machine Learning is divided into three main types:

1. Supervised Learning: In supervised learning, the model is trained on
labeled data (data that contains input-output pairs). The algorithm learns
the mapping between inputs and outputs to make predictions on new data.
o Example: Predicting house prices based on features like area,
location, etc.
2. Unsupervised Learning: In unsupervised learning, the model is given data
without labels. The algorithm finds hidden patterns and structures in the
data, such as grouping similar data points.
o Example: Clustering customers based on purchasing behavior.
3. Reinforcement Learning: In reinforcement learning, an agent learns by
interacting with its environment and receiving feedback in the form of
rewards or penalties. The goal is to maximize the cumulative reward over
time.
o Example: Training a robot to navigate a maze.

, 3. What is the Difference Between Supervised and Unsupervised Learning?

Answer:
The primary difference is in the data used for training:

 Supervised Learning: The algorithm learns from labeled data (i.e., data that
has both input and output values). The goal is to predict the output for
new, unseen data based on past observations.
 Unsupervised Learning: The algorithm learns from unlabeled data (i.e.,
data that only has input values). It aims to identify patterns, groupings, or
structures in the data.



4. What are the Common Machine Learning Algorithms?

Answer:
Here are some common machine learning algorithms:

1. Linear Regression: A statistical method for modeling the relationship
between a dependent variable and one or more independent variables. It’s
commonly used for regression tasks.
2. Logistic Regression: A model used for binary classification tasks (e.g., spam
vs. not spam) that outputs a probability.
3. Decision Trees: A tree-like model used for both classification and regression
tasks, where each internal node represents a decision based on a feature.
4. Random Forest: An ensemble learning method that creates a collection of
decision trees and combines their results for better accuracy.
5. Support Vector Machines (SVM): A powerful classifier that tries to find the
hyperplane that best separates the classes in high-dimensional space.
6. K-Nearest Neighbors (KNN): A simple algorithm that classifies data points
based on the majority class of its k-nearest neighbors.
7. K-Means Clustering: An unsupervised algorithm used for grouping similar
data points into clusters.
8. Naive Bayes: A probabilistic classifier based on Bayes’ Theorem, commonly
used for text classification tasks.
9. Neural Networks: Models inspired by the human brain, especially used in
deep learning tasks like image recognition and natural language processing.

Escuela, estudio y materia

Institución
Grado

Información del documento

Subido en
1 de febrero de 2025
Número de páginas
8
Escrito en
2024/2025
Tipo
Otro
Personaje
Desconocido

Temas

$6.09
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada

Conoce al vendedor
Seller avatar
rileyclover179

Documento también disponible en un lote

Conoce al vendedor

Seller avatar
rileyclover179 US
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
0
Miembro desde
1 año
Número de seguidores
0
Documentos
252
Última venta
-

0.0

0 reseñas

5
0
4
0
3
0
2
0
1
0

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes