100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4,6 TrustPilot
logo-home
Otro

AI in Cloud Computing: Integration, Benefits, and Applications

Puntuación
-
Vendido
-
Páginas
6
Subido en
01-02-2025
Escrito en
2024/2025

This document explores AI in Cloud Computing, highlighting how AI and cloud technologies integrate to enhance scalability, automation, and data processing. It covers AI as a Service (AIaaS), cloud-based machine learning platforms, and major providers like AWS, Google Cloud, and Microsoft Azure. The document also discusses edge computing, big data analytics, and real-world AI applications in the cloud.

Mostrar más Leer menos
Institución
Grado

Vista previa del contenido

AI in Cloud Computing
Artificial Intelligence (AI) and Cloud Computing are two of the most
transformative technologies today. When combined, they create a powerful
synergy that has the potential to revolutionize industries, improve business
processes, and enhance the quality of services. Cloud computing provides scalable
infrastructure, storage, and computing power, while AI adds the ability to analyze
data, make predictions, and automate tasks. The integration of AI into the cloud
brings the power of intelligent computing to users, organizations, and developers,
enabling them to take advantage of cutting-edge technologies without the need
for substantial investments in hardware.

In this section, we’ll explore how AI and cloud computing work together, the
benefits they offer, and some real-world applications.



What is Cloud Computing?
Cloud computing is the delivery of computing services such as storage, processing,
networking, databases, and software over the internet (the "cloud"). These
services are hosted and maintained by cloud providers, offering on-demand
access to powerful infrastructure and applications.

There are several types of cloud computing models:

1. Public Cloud: Services are delivered over the public internet and shared
across multiple organizations. Major providers include Amazon Web
Services (AWS), Microsoft Azure, and Google Cloud.
2. Private Cloud: Services are delivered through private networks, dedicated
to a single organization.
3. Hybrid Cloud: A mix of public and private cloud services, offering flexibility
for workloads.

, How AI Enhances Cloud Computing
Cloud computing provides an ideal environment for deploying AI models and
algorithms. Here’s how AI enhances cloud computing:

1. Scalability of AI Workloads
o AI applications, particularly deep learning models, require vast
computational power. Cloud providers offer scalable resources like
high-performance GPUs (Graphics Processing Units) and TPUs
(Tensor Processing Units) that can support AI workloads.
o Example: Cloud providers such as Google Cloud, AWS, and Azure
offer machine learning frameworks and tools to train AI models,
making it easier for developers to scale their AI applications.
2. AI-powered Cloud Services
o Cloud providers offer pre-built AI services, enabling businesses and
developers to integrate AI functionalities into their applications
without having to build everything from scratch.
o Example: Google Cloud offers services like Google Cloud Vision for
image recognition, Natural Language API for text analysis, and
AutoML for custom AI model building. These services enable users to
incorporate powerful AI into their applications with ease.
3. Cost Efficiency
o Cloud computing reduces the need for large upfront investments in
hardware for AI applications. With AI in the cloud, businesses can pay
only for the computing power they use, making it a cost-effective
option for small and medium-sized enterprises.
o Example: A startup developing an AI-driven recommendation system
can rent cloud computing resources to train their machine learning
models, rather than investing in expensive hardware.
4. Faster Time to Market
o With AI tools and frameworks available in the cloud, businesses can
rapidly develop, test, and deploy AI applications without waiting for
lengthy hardware setups. This helps reduce the time-to-market for
innovative products and services.
o Example: A company developing a predictive analytics application
can access pre-configured AI services in the cloud and start building
their models immediately.

Escuela, estudio y materia

Institución
Grado

Información del documento

Subido en
1 de febrero de 2025
Número de páginas
6
Escrito en
2024/2025
Tipo
Otro
Personaje
Desconocido

Temas

$6.49
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada

Conoce al vendedor
Seller avatar
rileyclover179

Documento también disponible en un lote

Conoce al vendedor

Seller avatar
rileyclover179 US
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
0
Miembro desde
1 año
Número de seguidores
0
Documentos
252
Última venta
-

0.0

0 reseñas

5
0
4
0
3
0
2
0
1
0

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes