100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4,6 TrustPilot
logo-home
Otro

Computer Vision: Concepts, Techniques, and Applications

Puntuación
-
Vendido
-
Páginas
6
Subido en
01-02-2025
Escrito en
2024/2025

This document covers Computer Vision, focusing on its core concepts, techniques, and applications. It explores image processing, feature extraction, and object detection, along with image classification using Convolutional Neural Networks (CNNs). The document also discusses real-world applications, such as facial recognition, OCR, and autonomous vehicles.

Mostrar más Leer menos
Institución
Grado

Vista previa del contenido

Computer Vision
Computer Vision is an interdisciplinary field that empowers machines to
interpret, analyze, and understand visual information from the world, much like
humans do. It is a branch of artificial intelligence (AI) that combines elements of
machine learning, deep learning, and image processing techniques to give
computers the ability to process and make decisions based on visual inputs, such
as images, videos, and real-time data.

The ultimate goal of computer vision is to enable computers to perceive and
understand the visual world with the same accuracy and flexibility that humans
use to process and comprehend their environment. By mimicking human vision,
computer vision algorithms are designed to understand and process images and
videos to perform tasks such as object recognition, face detection, scene
segmentation, motion analysis, and much more.



Applications of Computer Vision
Computer vision has a wide range of applications across different fields, from
healthcare and automotive to entertainment and security. Some key applications
include:

1. Image Classification
o Definition: Image classification is the process of categorizing an
image into one of several predefined classes. The model processes
the image and assigns it to the most relevant category.
o Example: In a medical setting, computer vision systems can classify
medical images, such as X-rays, into categories like healthy,
cancerous, or abnormal.
2. Object Detection
o Definition: Object detection not only detects objects in an image but
also identifies their specific locations by drawing bounding boxes
around them. It is often used in combination with image
classification.

, o Example: In autonomous driving, computer vision systems detect
and track vehicles, pedestrians, traffic signs, and obstacles in real
time to navigate safely.
3. Face Recognition
o Definition: Face recognition uses computer vision algorithms to
identify or verify a person based on facial features. It is often used for
security purposes, such as unlocking smartphones or surveillance.
o Example: Face recognition systems are used in airports for passenger
identification and in smartphones for secure authentication.
4. Scene Segmentation
o Definition: Scene segmentation refers to dividing an image into
multiple segments or regions that represent different objects or parts
of a scene. This process helps in understanding the content of the
image.
o Example: In autonomous vehicles, scene segmentation is used to
separate the road, pedestrians, vehicles, and traffic signs to make
real-time driving decisions.
5. Gesture Recognition
o Definition: Gesture recognition involves identifying human gestures,
such as hand or body movements, to enable interaction with
machines or devices.
o Example: Gesture-based controls are used in virtual reality (VR)
environments or gaming consoles like Xbox Kinect.
6. Optical Character Recognition (OCR)
o Definition: OCR is a technology used to convert different types of
documents—such as scanned paper documents, PDFs, or images—
into editable and searchable text.
o Example: OCR is used in document scanning apps to extract text
from images for digitization and data processing.
7. Autonomous Vehicles
o Definition: Computer vision plays a critical role in self-driving cars by
enabling them to interpret and understand their surroundings
through cameras, sensors, and real-time processing.
o Example: Autonomous vehicles use computer vision to detect traffic
signals, other vehicles, pedestrians, and road signs to navigate safely
and make driving decisions.

Escuela, estudio y materia

Institución
Grado

Información del documento

Subido en
1 de febrero de 2025
Número de páginas
6
Escrito en
2024/2025
Tipo
Otro
Personaje
Desconocido

Temas

$5.49
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada

Conoce al vendedor
Seller avatar
rileyclover179

Documento también disponible en un lote

Conoce al vendedor

Seller avatar
rileyclover179 US
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
0
Miembro desde
1 año
Número de seguidores
0
Documentos
252
Última venta
-

0.0

0 reseñas

5
0
4
0
3
0
2
0
1
0

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes