100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4,6 TrustPilot
logo-home
Otro

Unsupervised Learning: Techniques, Algorithms, and Applications

Puntuación
-
Vendido
-
Páginas
6
Subido en
31-01-2025
Escrito en
2024/2025

This document explores unsupervised learning, focusing on its key techniques, algorithms, and applications. It covers clustering methods like K-means and hierarchical clustering, as well as dimensionality reduction techniques such as Principal Component Analysis (PCA). The document also highlights the use of unsupervised learning in anomaly detection and its applications in real-world data analysis.

Mostrar más Leer menos
Institución
Grado

Vista previa del contenido

Unsupervised Learning
Unsupervised learning is a type of machine learning where the algorithm is
provided with data that is not labeled. Unlike supervised learning, where the
algorithm learns from input-output pairs, unsupervised learning aims to find
hidden patterns, structures, or relationships in the data without prior knowledge
of the output. This approach is particularly useful when you don’t have labeled
data but want to extract meaningful insights or organize the data in some way.



What is Unsupervised Learning?
In unsupervised learning, the algorithm is tasked with identifying hidden patterns
or structures within a set of data. The primary goal is to explore the data and
learn its inherent structure, relationships, or distributions, without the guidance
of labeled examples.

 Unlabeled Data: The key feature of unsupervised learning is that the data
used for training does not have predefined labels or categories. Instead, the
algorithm tries to group, segment, or organize the data based on
similarities or common features.
 Exploratory Nature: Since the output labels are not provided, unsupervised
learning is often used in exploratory data analysis, anomaly detection, and
clustering tasks.



Types of Unsupervised Learning Tasks
Unsupervised learning tasks can be divided into two primary categories:

1. Clustering Clustering is the task of grouping similar data points together
into clusters or groups. The goal is to find natural groupings in the data
based on similarity.
o How It Works: The algorithm identifies patterns in the data and
groups similar data points into clusters. Data points within the same
cluster share common characteristics, and the algorithm strives to

, minimize the distance or dissimilarity between points in the same
cluster.
o Applications: Clustering is widely used in customer segmentation,
image compression, and grouping documents or text data based on
topics.
o Example: In a marketing campaign, clustering can be used to
segment customers based on purchasing behavior to create targeted
marketing strategies.
2. Dimensionality Reduction Dimensionality reduction aims to reduce the
number of features or variables in a dataset while retaining as much
information as possible. This process simplifies the dataset and can help
improve the performance of machine learning algorithms.
o How It Works: Dimensionality reduction techniques try to capture
the most important aspects of the data while discarding less
important or redundant features.
o Applications: Dimensionality reduction is often used in areas like
image processing (e.g., reducing the number of pixels in an image),
feature extraction, and data visualization.
o Example: Reducing the number of features in a dataset of customer
information while preserving patterns that distinguish different
customer segments.



The Unsupervised Learning Process
While supervised learning involves labeled data, unsupervised learning focuses on
discovering hidden patterns in unlabeled data. The general process for
unsupervised learning is as follows:

1. Data Collection: Just like in supervised learning, the first step is gathering a
dataset. However, the data in unsupervised learning does not include any
labels or target values.
2. Data Preprocessing: Before applying unsupervised learning algorithms, the
data must be cleaned and prepared. This step may involve normalizing or
scaling the data, handling missing values, and removing outliers.
3. Model Selection: Once the data is ready, the next step is to choose an
unsupervised learning algorithm. Common algorithms for clustering include

Escuela, estudio y materia

Institución
Grado

Información del documento

Subido en
31 de enero de 2025
Número de páginas
6
Escrito en
2024/2025
Tipo
Otro
Personaje
Desconocido

Temas

$5.19
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada

Conoce al vendedor
Seller avatar
rileyclover179

Documento también disponible en un lote

Conoce al vendedor

Seller avatar
rileyclover179 US
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
0
Miembro desde
1 año
Número de seguidores
0
Documentos
252
Última venta
-

0.0

0 reseñas

5
0
4
0
3
0
2
0
1
0

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes