100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4,6 TrustPilot
logo-home
Otro

Challenges in Machine Learning and Artificial Intelligence: Overcoming Barriers to Progress

Puntuación
-
Vendido
-
Páginas
6
Subido en
31-01-2025
Escrito en
2024/2025

This document explores the major challenges in machine learning and artificial intelligence, such as data quality, bias in AI, model interpretability, and overfitting/underfitting. It also discusses issues related to scalability, ethics, and the limitations of current AI technologies, offering insights into overcoming these barriers for better AI development.

Mostrar más Leer menos
Institución
Grado

Vista previa del contenido

Challenges in Machine Learning and Artificial
Intelligence
While Machine Learning (ML) and Artificial Intelligence (AI) have made significant
strides in recent years, there are still numerous challenges that need to be
addressed for further advancements. These challenges span from technical and
ethical considerations to issues related to data quality, model interpretability, and
computational power.



1. Data Quality and Quantity
Data is the backbone of machine learning and AI models. The quality and quantity
of data directly impact the accuracy and performance of these models.

 Insufficient Data: Machine learning models require large amounts of
labeled data for training, especially for deep learning. In many fields, there
is a scarcity of high-quality labeled data, which can hinder model
performance.
 Noisy Data: Real-world data is often noisy and contains errors, which can
cause machine learning models to make incorrect predictions. Cleaning and
preprocessing data to remove inconsistencies is an essential, yet
challenging, task.
 Data Imbalance: In many real-world applications, the data might not be
equally distributed across different classes. For example, in a fraud
detection model, fraudulent transactions may be much rarer than
legitimate ones. This imbalance can lead to biased models, where the
model is more likely to predict the majority class, overlooking the minority
class.
 Privacy Concerns: The use of personal and sensitive data for AI/ML
applications raises significant privacy concerns. Collecting, storing, and
using data responsibly while maintaining user privacy is a challenge.

, 2. Model Interpretability and Transparency
Deep learning and other AI models are often referred to as "black-box" systems
because their decision-making processes are not easily interpretable by humans.
This lack of transparency poses several issues:

 Trust: In critical applications such as healthcare, finance, and autonomous
driving, stakeholders need to trust AI systems. If a model’s decision-making
process cannot be easily understood or explained, it becomes harder to
trust the results.
 Accountability: When AI systems make mistakes or cause harm, it becomes
difficult to assign responsibility if the model's behavior is not interpretable.
 Explainability: Developing techniques that explain why a model made a
specific decision is crucial, especially in regulated industries, where
understanding the rationale behind AI decisions is necessary.



3. Ethical and Bias Issues
AI and machine learning models can inadvertently perpetuate or amplify biases
present in the data they are trained on, leading to unfair and unethical outcomes.

 Bias in Training Data: If the data used to train a model contains biases, the
model will likely replicate those biases. For example, facial recognition
systems trained primarily on images of white people may perform poorly
when trying to recognize individuals of other races.
 Discrimination: ML models used in hiring, lending, or criminal justice
decisions can perpetuate discrimination if not properly monitored. For
instance, biased training data can lead to AI systems favoring certain
demographic groups over others.
 Ethical Dilemmas: AI systems used for surveillance, decision-making, and
autonomous weapons pose ethical dilemmas. Determining what is
acceptable and ethical in AI applications is a challenge for policymakers,
technologists, and society at large.

Escuela, estudio y materia

Institución
Grado

Información del documento

Subido en
31 de enero de 2025
Número de páginas
6
Escrito en
2024/2025
Tipo
Otro
Personaje
Desconocido

Temas

$7.49
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada

Conoce al vendedor
Seller avatar
rileyclover179

Documento también disponible en un lote

Conoce al vendedor

Seller avatar
rileyclover179 US
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
0
Miembro desde
1 año
Número de seguidores
0
Documentos
252
Última venta
-

0.0

0 reseñas

5
0
4
0
3
0
2
0
1
0

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes