100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4.2 TrustPilot
logo-home
Examen

CS6515 EXAM 3 NEWEST VERSION COMPLETE QUESTIONS AND CORRECT DETAILED ANSWERS (VERIFIED ANSWERS) |ALREADY GRADED A+

Puntuación
-
Vendido
-
Páginas
9
Grado
A+
Subido en
30-01-2025
Escrito en
2024/2025

CS6515 EXAM 3 NEWEST VERSION COMPLETE QUESTIONS AND CORRECT DETAILED ANSWERS (VERIFIED ANSWERS) |ALREADY GRADED A+ 2. Demonstrate that problem B is at least as hard as a problem believed to be NPComplete. This is done via a reduction from a known problem A (A->B) a) Show how an instance of A is converted to B in polynomial time b) Show how a solution to B can be converted to a solution for A, again in polynomial time c) Show that a solution for B exists IF AND ONLY IF a solution to A exists - most prove both parts: if you you have a solution to B, you have a solution to A - If there is no solution to B, then no solution exists to A LP: Why optimum occurs at a vertex - ANSWER -Feasible region is convex LP: Optimum achieved at a vertex except: - ANSWER -1. Infeasible - feasible region is empty 2. Unbounded - optimal value of objective function is arbitrarily large Independent Set -> Vertex Cover - ANSWER -Lemma: I is an independent set of G(V, E) iff V - I is a vertex cover of G Simply check if there is a vertex cover of size V - b in G(V, E). If there is, output V - S 3SAT -> Independent Set - ANSWER -Lemma: f is satisfiable iff the resulting set has an independent set of size m (# of clauses in f) in G(V, E). To construct G(V, E), create a node for each literal in each clause and connect them by an edge. Also connect any literal with it's negation. Independent Set -> Clique - ANSWER -Lemma: G(V, E) has an independent set of size g iff G'(V, E) has a clique of size g. To construct G'(V, E), add all the vertices in G(V, E) to G'(V, E) and add edges to G'(V, E) if there is no edge in G(V, E) SAT - ANSWER -Input: C is a CNF with any # of variables (n) and clauses (m) Output: assignment of each variable s.t. the CNF is True 3SAT - ANSWER -Input: C is a CNF whose clauses have at most 3 literals Output: Assignment of each variable s.t. the CNF is True Clique - ANSWER -Input: G is an undirected, unweighted graph, k is the size of the clique Output: A Clique in G with at least k vertices Independent Set - ANSWER -Input: G is an undirected, unweighted graph, k is the size of the IS Output: An IS in G with at least k vertices VertexCover - ANSWER -Input: G is an undirected, unweighted graph, b is a budget of the vertex cover Output: A vertex cover of G with at most b vertices RudrataPath - ANSWER -Input: G = (V, E) is an undirected, unweighted graph, s is the starting node and t is the destination node. Output: A simple path starting at s and ending at t that passes through each vertex in the graph exactly once RudrataCycle - ANSWER -Input: G=(V, E) is an undirected, unweighted graph Output: A cycle that visits each vertex in the graph exactly once SubsetSum - ANSWER -Input: A is an array of integers and t is an integer Output: An array of integers that is a subset of A and sums to t KnapsackSearch - ANSWER -Input: W is an array of weights, V is an array of values, B is the capacity of the knapsack, and g is the goal. Output: Array of items of value at least g with weight less than or equal to B TSP - ANSWER -Input: G is a weighted, fully connected graph with weights for each n(n-1)/2 edges; b is a budget Output: A path that visits every vertex in the graph exactly once and has a total cost of b or less 3DMatching - ANSWER -Input: disjoint sets X, Y, Z of items to be matched. Collection of compatibility triples (X, Y, Z) Output: A disjoint set (no elements in common) of n compatible triples ZOE - ANSWER -Input: an mXn matrix A, all of whose entries are 0 or 1 Output: An n-vector x, all of whose entries are 0 or 1, such that AX = 1 Clique, Independent Set and Vertex Cover Relation - ANSWER -Lemma: Given an undirected graph G = (V, E) with n vertices and a subset V ′ ⊆ V of size k. The following are equivalent:

Mostrar más Leer menos
Institución
CS6515
Grado
CS6515









Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Escuela, estudio y materia

Institución
CS6515
Grado
CS6515

Información del documento

Subido en
30 de enero de 2025
Número de páginas
9
Escrito en
2024/2025
Tipo
Examen
Contiene
Preguntas y respuestas

Temas

Vista previa del contenido

CS6515 EXAM 3 NEWEST VERSION COMPLETE
QUESTIONS AND CORRECT DETAILED ANSWERS
(VERIFIED ANSWERS) |ALREADY GRADED A+


2. Demonstrate that problem B is at least as hard as a problem believed to be NP-
Complete. This is done via a reduction from a known problem A (A->B)

a) Show how an instance of A is converted to B in polynomial time

b) Show how a solution to B can be converted to a solution for A, again in
polynomial time

c) Show that a solution for B exists IF AND ONLY IF a solution to A exists
- most prove both parts: if you you have a solution to B, you have a solution to A
- If there is no solution to B, then no solution exists to A

LP: Why optimum occurs at a vertex - ANSWER -Feasible region is convex

LP: Optimum achieved at a vertex except: - ANSWER -1. Infeasible - feasible
region is empty
2. Unbounded - optimal value of objective function is arbitrarily large

Independent Set -> Vertex Cover - ANSWER -Lemma: I is an independent set of
G(V, E) iff V - I is a vertex cover of G

Simply check if there is a vertex cover of size V - b in G(V, E). If there is, output
V-S

3SAT -> Independent Set - ANSWER -Lemma: f is satisfiable iff the resulting set
has an independent set of size m (# of clauses in f) in G(V, E).

, To construct G(V, E), create a node for each literal in each clause and connect
them by an edge. Also connect any literal with it's negation.

Independent Set -> Clique - ANSWER -Lemma: G(V, E) has an independent set
of size g iff G'(V, E) has a clique of size g.

To construct G'(V, E), add all the vertices in G(V, E) to G'(V, E) and add edges to
G'(V, E) if there is no edge in G(V, E)

SAT - ANSWER -Input: C is a CNF with any # of variables (n) and clauses (m)

Output: assignment of each variable s.t. the CNF is True

3SAT - ANSWER -Input: C is a CNF whose clauses have at most 3 literals

Output: Assignment of each variable s.t. the CNF is True

Clique - ANSWER -Input: G is an undirected, unweighted graph, k is the size of
the clique

Output: A Clique in G with at least k vertices

Independent Set - ANSWER -Input: G is an undirected, unweighted graph, k is
the size of the IS

Output: An IS in G with at least k vertices

VertexCover - ANSWER -Input: G is an undirected, unweighted graph, b is a
budget of the vertex cover

Output: A vertex cover of G with at most b vertices

RudrataPath - ANSWER -Input: G = (V, E) is an undirected, unweighted graph, s
is the starting node and t is the destination node.
$8.49
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada


Documento también disponible en un lote

Conoce al vendedor

Seller avatar
Los indicadores de reputación están sujetos a la cantidad de artículos vendidos por una tarifa y las reseñas que ha recibido por esos documentos. Hay tres niveles: Bronce, Plata y Oro. Cuanto mayor reputación, más podrás confiar en la calidad del trabajo del vendedor.
TheExamMaestro Teachme2-tutor
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
115
Miembro desde
1 año
Número de seguidores
5
Documentos
2994
Última venta
6 horas hace
Exam Vault

Exam Vault is your trusted destination for high-quality exam materials and study resources. We provide a wide rage of tests and prep guides to help you succeed, whether you're preparing for academic exams, certifications, or professional assessments

3.8

13 reseñas

5
7
4
2
3
1
2
0
1
3

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes